极端生态环境水循环关键参量监测设备与物联网监测系统研制和示范  

Development and demonstration of key parameter monitoring equipment and IoT monitoring system for water cycle in extreme ecological environments

在线阅读下载全文

作  者:刘绍民[1] 徐自为[1] 黄晓东[2] 周纪 孙义博 陈莹莹[5] 晋锐 徐同仁[1] LIU Shaomin;XU Ziwei;HUANG Xiaodong;ZHOU Ji;SUN Yibo;CHEN Yingying;JIN Rui;XU Tongren(State Key Laboratory of Earth Surface Processes and Hazards Risk Governance,Beijing Normal University,Beijing 100875,China;College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730000,China;School of Resources and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;State Environment Protection Key Laboratory of Regional Eco-Process and Function Assessment,Chinese Research Academy of Environmental Sciences,Beijing 100012,China;National Tibetan Plateau Data Center,State Key Laboratory of Tibetan Plateau Earth System and Resource Environment,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China)

机构地区:[1]北京师范大学地表过程与水土风沙灾害风险防控全国重点实验室,北京100875 [2]兰州大学草地农业科技学院,兰州730000 [3]电子科技大学资源与环境学院,成都611731 [4]中国环境科学研究院国家环境保护区域生态过程与功能评估重点实验室,北京100012 [5]中国科学院青藏高原研究所国家青藏高原科学数据中心青藏高原地球系统与资源环境重点实验室,北京100101 [6]中国科学院西北生态环境资源研究院,兰州730000

出  处:《生态学报》2025年第3期1251-1260,共10页Acta Ecologica Sinica

基  金:国家重点研发计划项目(2023YFF1303503)。

摘  要:极端生态环境水循环关键参量监测设备基本依赖进口,部分关键参量尚无原位监测设备或缺乏大范围监测设备,且信息化、智能化水平低,亟需自主研发相关监测设备与物联网监测技术,填补国内外相关设备的空白或实现国产替代。本文主要介绍国家重点研发计划重点专项“典型脆弱生态系统保护与修复”2023年立项的项目“极端生态环境水循环关键参量监测设备与物联网监测系统研制和示范”(2023YFF1303500)的立项背景、主要研究内容、实施方案以及考核指标与创新点等。本项目紧密围绕国家生态监测需求,瞄准极端生态环境水循环关键参量高精度、自动、稳定监测等技术难点,研制极端生态环境(高寒、干旱)水循环关键参量监测设备6套,研建极端生态环境物联网监测系统1套,并开展基于物联网监测系统的研制设备野外测试和示范应用。项目将满足国家“三区四带”生态安全屏障建设的重大科技需求,实现极端生态环境水循环关键参量监测设备的自主创新与升级换代,大幅度提升极端生态环境野外台站监测的信息化、智能化水平,服务于我国脆弱生态系统的保护与修复。The monitoring of key parameters in the water cycle within extreme ecological environments is currently highly dependent on imported equipment.In many instances,critical parameters either lack in⁃situ monitoring devices altogether or have no large⁃scale monitoring solutions available.Furthermore,the existing technology in this field is often limited by low levels of informatization and intelligence,which hampers the effectiveness and efficiency of monitoring efforts.To address these challenges,there is an urgent need for independent research and development of advanced monitoring equipment and IoT(Internet of Things)technologies.These innovations would not only fill gaps in both domestic and international monitoring capabilities but also provide a pathway to replace imported systems with domestically produced alternatives,strengthening technological self⁃reliance.This paper introduces the project titled“Development and demonstration of key parameter monitoring equipment and IoT monitoring system for water cycle in extreme ecological environments”(2023YFF1303500),which was approved in 2023 under the national key research and development program′s key project,“Protection and restoration of typical fragile ecosystems.”The paper discusses various aspects of the project,including its background,primary research objectives,implementation strategies,performance evaluation criteria,and notable innovations.The project addresses the urgent national demand for enhanced ecological monitoring,particularly in extreme environments.Its core focus is on overcoming significant technical barriers to achieve high⁃precision,automated,and stable monitoring of key water cycle parameters in these challenging environments.The project′s ultimate aim is to develop six sets of advanced monitoring equipment for key water cycle parameters,alongside an IoT⁃based monitoring system tailored for use in extreme ecological settings such as cold and arid regions.Field tests and demonstration applications will be carried out to

关 键 词:极端生态环境 水循环 监测设备 物联网监测系统 野外测试与示范 

分 类 号:X835[环境科学与工程—环境工程] X84

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象