特高压换流站调相机外冷水系统腐蚀结垢预测模型研究  

Study on the prediction model of corrosion and scaling in the external cooling water system of ultra-high voltage converter stations phase modulator

作  者:顾先涛 樊培培 陈晓春 高宇祥 周仲康 张俊杰 马晓薇 计巧珍 吴妍 徐亚艳 董浩声 段忠辛 杨林 高忠辉 GU Xiantao;FAN Peipei;CHEN Xiaochun;GAO Yuxiang;ZHOU Zhongkang;ZHANG Junjie;MA Xiaowei;JI Qiaozhen;WU Yan;XU Yayan;DONG Haosheng;DUAN Zhongxin;YANG Lin;GAO Zhonghui(Power Science Research Institute of State Grid Anhui Electric Power Co.,Ltd.,Hefei 230601,China;Ultra High Voltage Branch of State Grid Anhui Electric Power Co.,Ltd.,Hefei 230061,China;Anhui Xinli Electricity Science and Technology Consulting Limited Liability Company,Hefei 230601,China;School of Materials Science and Engineering,Tianjin University,Tianjin 300192,China)

机构地区:[1]国网安徽省电力有限公司电力科学研究院,安徽合肥230601 [2]国网安徽省电力有限公司超高压分公司,安徽合肥230061 [3]安徽新力电业科技咨询有限责任公司,安徽合肥230601 [4]天津大学材料科学与工程学院,天津300192

出  处:《工业水处理》2025年第2期132-137,共6页Industrial Water Treatment

基  金:国网安徽省电力有限公司科技项目(B3120523000H)。

摘  要:大型换流站调相机外冷水系统腐蚀结垢直接影响冷却器的热力性能,开展冷却水结垢机理研究和结垢预测研究对保障电网安全运行具有重要意义。对调相机外冷水结垢机理和现有结垢预测模型进行探讨,在此基础上提出以深度学习算法进一步建立精确的垢生长数学模型。首先对某大型特高压换流站冷却水系统运行数据进行预处理,得到3250组有效数据样本,之后以该数据集进行训练,采用反向传播(BP)神经网络和机器学习算法建立循环冷却水系统的结垢预测模型,并对该模型的预测精准度进行评价。结果表明,训练后的模型能够有效预测结垢量,总体平均相对百分比误差(MAPR)在7.53%以下,决定系数(R2)为0.985,具备良好的拟合效果以及泛化能力。The corrosion and scaling of the external cooling water system of large converter station phase modulator direcbly affect the thermal performance of the cooler.Research on the scaling mechanism of cooling water and scal-ing prediction is of great significance to ensure the safe operation of the power grid.This paper discussed the scaling mechanism of the external cooling water system of the phase modulator and the existing scaling prediction models,and proposed to further establish an accurate scaling growth mathematical model by deep learning algorithms.Firstly,operational datas from the cooling water system of a large ultra-high voltage converter station were prepro-cessed,resulting in 3250 valid data samples.Based on this dataset,a scale prediction model of the circulating cool-ing water system was trained using backpropagation(BP)neural networks and machine learning algorithms,and the accuracy of the model was evaluated.The results showed that the trained model effectively predicted the amount of scaling.The mean absolute percentage error(MAPE)and the coefficient of determination(R²)were 7.53%and 0.985 respectively,indicating good fitting performance and generalization ability of the model.

关 键 词:循环冷却水系统 阻垢模型 结垢机理 BP神经网络 机器学习 

分 类 号:X52[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象