检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘骞 LIU Qian(Marketing Service Center of State Grid Henan Electric Power Company,Zhengzhou,Henan 450052,China)
机构地区:[1]国网河南省电力公司营销服务中心,河南郑州450052
出 处:《东北电力技术》2025年第2期15-18,共4页Northeast Electric Power Technology
摘 要:配网运行状态随时间变化,线损情况也会随之波动,因此电网需要实时或近实时的数据处理和分析能力,以适应动态变化的环境,为此提出一种电力物联网环境下的配网线损智能诊断方法。首先,对配网运行数据进行分层融合处理,利用改进随机森林算法预测配网线损率;其次,基于半监督学习框架与径向基函数神经网络,构建线损诊断模型,实现配网线损智能诊断;最后,通过试验结果显示,研究方法对电力物联网环境的配网线损率的预测具有较高精度,且能够精准诊断出不同设备的线损故障。The operation status of the distribution network changes over time,and the line loss situation also fluctuates accordingly.Therefore,it needs real-time or near real time data processing and analysis capabilities to adapt to the dynamically changing power grid environment.Therefore,an intelligent diagnosis method for distribution network line loss in the context of the power Internet of Things is proposed.Firstly,it processes the operation data of distribution network by hierarchical fusion,using improved random forest algo-rithm to predict distribution network line loss rate.Secondly,based on a semi supervised learning framework and radial basis function neural network,it constructs a line loss diagnosis model to achieve intelligent diagnosis of distribution network line loss.Finally,the experimental results show that the research method has high accuracy in predicting the distribution network line loss rate in the power Internet of Things environment,and can accurately diagnose line loss faults of different devices.
分 类 号:TM714.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.25.53