Recent progress in organic optoelectronic synaptic transistor arrays:fabrication strategies and innovative applications of system integration  被引量:1

作  者:Pu Guo Junyao Zhang Jia Huang 

机构地区:[1]School of Materials Science and Engineering,Tongji University,Shanghai 201804,China

出  处:《Journal of Semiconductors》2025年第2期72-86,共15页半导体学报(英文版)

基  金:supported by the National Key Research and Development Program of China(2021YFA1101303);the National Natural Science Foundation of China(62374115);the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096).

摘  要:The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.

关 键 词:organic transistor arrays optoelectronic synaptic transistors neuromorphic systems system integration 

分 类 号:TN364.3[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象