低精度量化的OTFS系统性能分析  

Performance Analysis of OTFS System withLow-resolution Quantization

在线阅读下载全文

作  者:张馨月 李华 李星 ZHANG Xinyue;LI Hua;LI Xing(Potin(Beijing)Technology Co.,Ltd.,Beijing 100096,China;School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China)

机构地区:[1]博鼎实华(北京)技术有限公司,北京100096 [2]北京科技大学计算机与通信工程学院,北京100083

出  处:《电讯技术》2025年第2期199-204,共6页Telecommunication Engineering

基  金:中国博士后科学基金项目第74批面上资助项目(2023M740223);2023年度国家资助博士后研究人员计划(GZC20230241)。

摘  要:正交时频空(Orthogonal Time and Frequency Space, OTFS)作为6G候选调制方案,旨在支持下一代无线通信系统在高速移动场景的异构性需求。为解决系统硬件成本高昂和功耗高的问题,构建了低精度量化OTFS系统,并推导了b-bit量化最小均方误差(Minimum Mean Square Error, MMSE)检测矩阵。通过加性量化噪声模型(Additive Quantization Noise Model, AQNM)推导系统输入-输出关系,并基于MMSE接收机评估系统误比特率(Bit Error Rate, BER)和可达速率性能。仿真结果表明,4-bit量化较全精度量化系统性能在BER=10^(-2)处损失约1 dB,可达速率减小约0.98%;8-bit量化与全精度量化的可达速率相当,验证了分析结果的有效性。Orthogonal time frequency space(OTFS)is a candidate modulation scheme for the sixth generation mobile communication(6G)to support heterogeneous requirements of next wireless communication systems in high-mobility scenarios.Considering the problems of high hardware cost and power consumption,the authors construct a low-resolution quantized OTFS system and derive a minimum mean square error(MMSE)detection matrix based on b-bit quantization.The input-output relationship of the system is derived using the additive quantization noise model(AQNM),and the bit error rate(BER)and achievable rate performance are evaluated using the MMSE receiver.Numerical results show that 4-bit quantization loses about 1 dB of performance at BER=10^(-2) and decreases the achievable rate by around 0.98%compared with full-resolution quantization;8-bit quantization achieves achievable rate comparable to full-precision quantization,confirming the validity of the analytical results.

关 键 词:正交时频空(OTFS) 低精度量化 快速时变信道 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象