检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wei Lou Dexian Zhang
机构地区:[1]Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor(Central South University),MinistryofEducation,Changsha 410083,China [2]School of Geosciences&Info-Physics,Central SouthUniversity Changsha 410083,China
出 处:《Journal of Earth Science》2025年第1期29-45,共17页地球科学学刊(英文版)
基 金:funded by the National Natural Science Foundation of China(Nos.41672082,42030809)。
摘 要:Mineral identification and discrimination play a significant role in geological study.Intelligent mineral discrimination based on deep learning has the advantages of automation,low cost,less time consuming and low error rate.In this article,characteristics of quartz,biotite and Kfeldspar from granite thin sections under cross-polarized light were studied for mineral images intelligent classification by Inception-v3 deep learning convolutional neural network(CNN),and transfer learning method.Dynamic images from multi-angles were employed to enhance the accuracy and reproducibility in the process of mineral discrimination.Test results show that the average discrimination accuracies of quartz,biotite and K-feldspar are 100.00%,96.88%and 90.63%.Results of this study prove the feasibility and reliability of the application of convolution neural network in mineral images classification.This study could have a significant impact in explorations of complicated mineral intelligent discrimination using deep learning methods and it will provide a new perspective for the development of more professional and practical mineral intelligent discrimination tools.
关 键 词:deep learning mineral discrimination Inception-v3 CNN transfer learning convolutional neural network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68