Applications of Deep Learning in Mineral Discrimination:A Case Study of Quartz,Biotite and K-Feldspar from Granite  

在线阅读下载全文

作  者:Wei Lou Dexian Zhang 

机构地区:[1]Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor(Central South University),MinistryofEducation,Changsha 410083,China [2]School of Geosciences&Info-Physics,Central SouthUniversity Changsha 410083,China

出  处:《Journal of Earth Science》2025年第1期29-45,共17页地球科学学刊(英文版)

基  金:funded by the National Natural Science Foundation of China(Nos.41672082,42030809)。

摘  要:Mineral identification and discrimination play a significant role in geological study.Intelligent mineral discrimination based on deep learning has the advantages of automation,low cost,less time consuming and low error rate.In this article,characteristics of quartz,biotite and Kfeldspar from granite thin sections under cross-polarized light were studied for mineral images intelligent classification by Inception-v3 deep learning convolutional neural network(CNN),and transfer learning method.Dynamic images from multi-angles were employed to enhance the accuracy and reproducibility in the process of mineral discrimination.Test results show that the average discrimination accuracies of quartz,biotite and K-feldspar are 100.00%,96.88%and 90.63%.Results of this study prove the feasibility and reliability of the application of convolution neural network in mineral images classification.This study could have a significant impact in explorations of complicated mineral intelligent discrimination using deep learning methods and it will provide a new perspective for the development of more professional and practical mineral intelligent discrimination tools.

关 键 词:deep learning mineral discrimination Inception-v3 CNN transfer learning convolutional neural network 

分 类 号:P575[天文地球—矿物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象