检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Runyu Zhao Huan Gao Lijie Duan Ran Yu
机构地区:[1]Department of Environmental Science and Engineering,School of Energy and Environment,Wuxi Engineering Research Center of Taihu Lake Water Environment,Southeast University,Nanjing 210096,China [2]Key Laboratory of Environmental Medicine Engineering,Ministry of Education,Southeast University,Nanjing 210009,China [3]Guangdong Institute of Socialism,Guangzhou 510400,China
出 处:《Journal of Environmental Sciences》2025年第4期385-394,共10页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.52270119).
摘 要:The inhibitory effects of zinc oxide nanoparticles(ZnO NPs)and impacts of N-acylhomoserine lactone(AHL)-based quorum sensing(QS)on biological nitrogen removal(BNR)performance have beenwell-investigated.However,the effects of ammonia nitrogen(NH_(4)^(+)-N)concentrations on NP toxicity and AHL regulation have seldom been addressed yet.This study consulted on the impacts of ZnO NPs on BNR systems when high NH_(4)^(+)-N concentrationwas available.The synergistic toxic effects of high-strength NH_(4)^(+)-N(200 mg/L)and ZnO NPs resulted in decreased ammonia oxidation rates and dropped the nitrogen removal efficiencies by 17.5%±0.2%.The increased extracellular polymeric substances(EPS)production was observed in response to the high NH_(4)^(+)-N and ZnO NP stress,which indicated the defensemechanism against the toxic effects in the BNR systemswas stimulated.Furthermore,the regulatory effects of exogenous N-decanoyl-homoserine lactone(C_(10)-HSL)-mediated QS system on NP-stressed BNR systems were revealed to improve the BNR performance under different NH_(4)^(+)-N concentrations.The C_(10)-HSL regulated the intracellular reactive oxygen species levels,denitrification functional enzyme activities,and antioxidant enzyme activities,respectively.This probably synergistically enhanced the defense mechanism against NP toxicity.However,compared to the low NH_(4)^(+)-N concentration of 60 mg/L,the efficacy of C_(10)-HSL was inhibited at high NH_(4)^(+)-N levels of 200 mg/L.The findings provided the significant application potential of QS system for BNR when facing toxic compound shock threats.
关 键 词:Biological nitrogen removal system Quorum sensing N-acyl-homoserine lactone Zinc oxide nanoparticle Ammonia concentration
分 类 号:X70[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.17.112