检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yang Zheng Guoliang Li Yi Xing Wenqing Xu Tao Yue
机构地区:[1]School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China [2]State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China [3]CAS Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Innovation Academy for Green Manufacture,Chinese Academy of Sciences,Beijing 100190,China
出 处:《Journal of Environmental Sciences》2025年第2期420-436,共17页环境科学学报(英文版)
基 金:supported by the Basic Research Business Fund Grant Program for University of Science and Technology Beijing (No.06500227);the Fundamental Research Funds for the Central Universities (No.FRF-TP-22-091A1).
摘 要:Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants.Besides the advantages of good Hg^(0) capture performance and lowsecondary pollution of the mineral selenium compounds,the most noteworthy is the relatively low regeneration temperature,allowing adsorbent regeneration with low energy consumption,thus reducing the utilization cost and enabling recovery of mercury resources.This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal,introduces in detail the different types ofmineral selenium compounds studied in the field ofmercury removal,reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components,such as reaction temperature,air velocity,and other factors,and summarizes the adsorption mechanism of different fugitive forms of selenium species.Based on the current research progress,future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg^(0) and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg^(0) removal in practical industrial applications.In addition,it remains a challenge to distinguish the oxidation and adsorption of Hg^(0) quantitatively.
关 键 词:Non-conventional pollutants Adsorbents Metal selenides Flue gas Mercury removal
分 类 号:X701[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171