检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yun Chen Jiaping Xiao
机构地区:[1]Department of Mechanical Engineering,University of Alabama,Tuscaloosa,35487,USA [2]School of Mechanical and Aerospace Engineering,Nanyang Technological University,Singapore,639798,Singapore
出 处:《Machine Intelligence Research》2025年第1期79-90,共12页机器智能研究(英文版)
摘 要:Collaborative heterogeneous robot systems can greatly enhance the efficiency of target search and navigation tasks.In this paper,we design a heterogeneous robot system consisting of an unmanned aerial vehicle(UAV)and an unmanned ground vehicle(UGV)for search and rescue missions in unknown environments.The system is able to search for targets and navigate to them in a maze-like mine environment with the policies learned through deep reinforcement learning algorithms.During the training process,if two robots are trained simultaneously,the rewards related to their collaboration may not be properly obtained.Hence,we introduce a multi-stage reinforcement learning framework and a curiosity module to encourage agents to explore unvisited environments.Experiments in simulation environments show that our framework can train the heterogeneous robot system to achieve the search and navigation with unknown target locations while existing baselines may not.The UGV achieves a success rate of 89.1%in the mission within the original environment,and maintains a 67.6%success rate in untrained complex environments.
关 键 词:Heterogeneous intelligent systems deep reinforcement learning multiagent systems robot learning target search
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38