Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning  

在线阅读下载全文

作  者:Yun Chen Jiaping Xiao 

机构地区:[1]Department of Mechanical Engineering,University of Alabama,Tuscaloosa,35487,USA [2]School of Mechanical and Aerospace Engineering,Nanyang Technological University,Singapore,639798,Singapore

出  处:《Machine Intelligence Research》2025年第1期79-90,共12页机器智能研究(英文版)

摘  要:Collaborative heterogeneous robot systems can greatly enhance the efficiency of target search and navigation tasks.In this paper,we design a heterogeneous robot system consisting of an unmanned aerial vehicle(UAV)and an unmanned ground vehicle(UGV)for search and rescue missions in unknown environments.The system is able to search for targets and navigate to them in a maze-like mine environment with the policies learned through deep reinforcement learning algorithms.During the training process,if two robots are trained simultaneously,the rewards related to their collaboration may not be properly obtained.Hence,we introduce a multi-stage reinforcement learning framework and a curiosity module to encourage agents to explore unvisited environments.Experiments in simulation environments show that our framework can train the heterogeneous robot system to achieve the search and navigation with unknown target locations while existing baselines may not.The UGV achieves a success rate of 89.1%in the mission within the original environment,and maintains a 67.6%success rate in untrained complex environments.

关 键 词:Heterogeneous intelligent systems deep reinforcement learning multiagent systems robot learning target search 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象