检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tao Zhou Yizhe Zhang Geng Chen Yi Zhou Ye Wu Deng-Ping Fan
机构地区:[1]PCA Lab,Key Laboratory of Intelligent Perception and Systems for High-dimensional Information of Ministry of Education,School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing,210094,China [2]School of Computer Science and Engineering,Northwestern Polytechnical University(NPU),Xi’an,710129,China [3]School of Computer Science and Engineering,Southeast University,Nanjing,211189,China [4]Computer Vision Lab,ETH Zürich,Zürich,8092,Switzerland
出 处:《Machine Intelligence Research》2025年第1期101-116,共16页机器智能研究(英文版)
基 金:supported in part by National Natural Science Foundation of China(Nos.62172228,62201263,62106043 and 62201265).
摘 要:Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer(CRC)in clinical practice.However,due to scale variation and blurry polyp boundaries,it is still a challenging task to achieve satisfactory segmentation performance with different scales and shapes.In this study,we present a novel edge-aware feature aggregation network(EFA-Net)for polyp segmentation,which can fully make use of cross-level and multi-scale features to enhance the performance of polyp segmentation.Specifically,we first present an edge-aware guidance module(EGM)to combine the low-level features with the high-level features to learn an edge-enhanced feature,which is incorporated into each decoder unit using a layer-by-layer strategy.Besides,a scale-aware convolution module(SCM)is proposed to learn scale-aware features by using dilated convolutions with different ratios,in order to effectively deal with scale variation.Further,a cross-level fusion module(CFM)is proposed to effectively integrate the cross-level features,which can exploit the local and global contextual information.Finally,the outputs of CFMs are adaptively weighted by using the learned edge-aware feature,which are then used to produce multiple side-out segmentation maps.Experimental results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and effectiveness.Our implementation code and segmentation maps will be publicly at https://github.com/taozh2017/EFANet.
关 键 词:Colorectal cancer polyp segmentation edge-aware guidance module scale-aware convolution module cross-level fusion module
分 类 号:R318[医药卫生—生物医学工程] TP391.41[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145