Solving the relativistic Hartree-Bogoliubov equation with the finite-difference method  

在线阅读下载全文

作  者:Yiran Wang Xiaojie Cao Jinniu Hu Ying Zhang 王一然;曹晓洁;胡金牛;张颖(Department of Physics,Faculty of Science,Tianjin University,Tianjin 300354,China;School of Physics,Nankai University,Tianjin 300071,China)

机构地区:[1]Department of Physics,Faculty of Science,Tianjin University,Tianjin 300354,China [2]School of Physics,Nankai University,Tianjin 300071,China

出  处:《Chinese Physics C》2025年第1期245-254,共10页中国物理C(英文版)

基  金:Supported by the National Natural Science Foundation of China(11775119,2175109);the Natural Science Foundation of Tianjin,China(19JCYBJC30800)。

摘  要:The relativistic Hartree-Bogoliubov(RHB)theory is a powerful tool for describing exotic nuclei near drip lines.The key technique is to solve the RHB equation in the coordinate space to obtain the quasi-particle states.In this paper,we solve the RHB equation with the Woods-Saxon-type mean-field and Delta-type pairing-field potentials by using the finite-difference method(FDM).We inevitably obtain spurious states when using the common symmetric central difference formula(CDF)to construct the Hamiltonian matrix,which is similar to the problem resulting from solving the Dirac equation with the same method.This problem is solved by using the asymmetric difference formula(ADF).In addition,we show that a large enough box is necessary to describe the continuum quasi-particle states.The canonical states obtained by diagonalizing the density matrix constructed by the quasi-particle states are not particularly sensitive to the box size.Part of the asymptotic wave functions can be improved by applying the ADF in the FDM compared to the shooting method with the same box boundary condition.

关 键 词:relativistic Hartree-Bogoliubov equation spurious state finite-difference method 

分 类 号:O571[理学—粒子物理与原子核物理] O241.3[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象