检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Deyi LI Lei MA Chunna ZENG 李德宜;马磊;曾春娜(School of Science,Wuhan University of Science and Technology,Wuhan,430081,China;School of Sciences,Guangdong Preschool Normal College in Maoming,Maoming,525200,China;School of Mathematical Sciences,Chongqing Normal University,Chongqing,401331,China)
机构地区:[1]School of Science,Wuhan University of Science and Technology,Wuhan,430081,China [2]School of Sciences,Guangdong Preschool Normal College in Maoming,Maoming,525200,China [3]School of Mathematical Sciences,Chongqing Normal University,Chongqing,401331,China
出 处:《Acta Mathematica Scientia》2025年第1期16-26,共11页数学物理学报(B辑英文版)
基 金:supported by the NSFC(12171378);supported by the Characteristic innovation projects of universities in Guangdong province(2023K-TSCX381);supported by the Young Top-Talent program of Chongqing(CQYC2021059145);the Major Special Project of NSFC(12141101);the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202200509);the Natural Science Foundation Project of Chongqing(CSTB2024NSCQ-MSX0937).
摘 要:An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.
关 键 词:convex bodies the log-Minkowski inequality curvature entropy the log-Minkowski inequality of curvature entropy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7