NOTES ON THE LOG-MINKOWSKI INEQUALITY OF CURVATURE ENTROPY  

在线阅读下载全文

作  者:Deyi LI Lei MA Chunna ZENG 李德宜;马磊;曾春娜(School of Science,Wuhan University of Science and Technology,Wuhan,430081,China;School of Sciences,Guangdong Preschool Normal College in Maoming,Maoming,525200,China;School of Mathematical Sciences,Chongqing Normal University,Chongqing,401331,China)

机构地区:[1]School of Science,Wuhan University of Science and Technology,Wuhan,430081,China [2]School of Sciences,Guangdong Preschool Normal College in Maoming,Maoming,525200,China [3]School of Mathematical Sciences,Chongqing Normal University,Chongqing,401331,China

出  处:《Acta Mathematica Scientia》2025年第1期16-26,共11页数学物理学报(B辑英文版)

基  金:supported by the NSFC(12171378);supported by the Characteristic innovation projects of universities in Guangdong province(2023K-TSCX381);supported by the Young Top-Talent program of Chongqing(CQYC2021059145);the Major Special Project of NSFC(12141101);the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202200509);the Natural Science Foundation Project of Chongqing(CSTB2024NSCQ-MSX0937).

摘  要:An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.

关 键 词:convex bodies the log-Minkowski inequality curvature entropy the log-Minkowski inequality of curvature entropy 

分 类 号:O186.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象