检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Denghui WU Jiazu ZHOU 武登辉;周家足(College of Science,Northwest A&F University,Yangling,712100,China;School of Mathematics and Big Data,Guizhou Education University,Guiyang,550018,China)
机构地区:[1]College of Science,Northwest A&F University,Yangling,712100,China [2]School of Mathematics and Big Data,Guizhou Education University,Guiyang,550018,China
出 处:《Acta Mathematica Scientia》2025年第1期104-117,共14页数学物理学报(B辑英文版)
基 金:Supported in part by the NSFC(12071378,12461009);the Natural Science Basic Research Program of Shaanxi(2023-JC-YB-036);the Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSQ033).
摘 要:In this paper,we develop Maurey’s and Bobkov-Ledoux’s methods to prove modified Brascamp-Lieb inequalities and log-Sobolev inequalities for one-dimensional log-concave measure.To prove these inequalities,the harmonic Prékopa-Leindler inequality is used.We prove that these new inequalities are more efficient in estimating the variance and entropy for some functions with exponential terms.
关 键 词:Brunn-Minkowski inequality Prékopa-Leindler inequality Brascamp-Lieb inequality log-Sobolev inequality log-concave measure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.91.46