JERISON-LEE IDENTITIES AND SEMI-LINEAR SUBELLIPTIC EQUATIONS ON HEISENBERG GROUP  

在线阅读下载全文

作  者:Xinan MA Qianzhong OU Tian WU 麻希南;欧乾忠;吴天(School of Mathematical Science,University of Science and Technology of China,Hefei,230026,China;School of Mathematics and Statistics,Guangxi Normal University,Guilin,541004,China)

机构地区:[1]School of Mathematical Science,University of Science and Technology of China,Hefei,230026,China [2]School of Mathematics and Statistics,Guangxi Normal University,Guilin,541004,China

出  处:《Acta Mathematica Scientia》2025年第1期264-279,共16页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(12141105,12471194);the first author’s research also was supported by the National Key Research and Development Project(SQ2020YFA070080).

摘  要:In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subelliptic equation on Heisenberg groupℍn by using the computer in[5].They wanted to know whether there is a theoretical framework that would predict the existence and the structure of such formulae.With the help of dimension conservation and invariant tensors,we can answer the above question.

关 键 词:Cauchy-Riemann Yamabe problem subelliptic equations Jerison-Lee identities 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象