检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄进[1] 张方敏[1] HUANG Jin;ZHANG Fangmin(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Ecology and Applied Meteorology,Nanjing University of Information Science&Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学,气象灾害预报预警与评估协同创新中心/生态与应用气象学院,南京210044
出 处:《应用生态学报》2025年第1期178-186,共9页Chinese Journal of Applied Ecology
基 金:江苏省碳达峰碳中和科技创新专项(BE2023400)资助。
摘 要:辨析高温热害与大尺度环流指数(LSCI)的可能联系有利于应对气候异常对夏玉米种植的影响。基于1980—2019年间河北、河南、山东、安徽、江苏的逐日最高气温数据及省级夏玉米单产记录,通过一阶差分处理、相关分析、回归分析评估了9种极端温度指数刻画生育期高温热害的适用性;基于主成分分析识别了关键致灾因子的时空模态,进一步通过时滞相关性分析了其对环流指数的响应特征。结果表明:当高温阈值设置为32℃时,高温期的最大累积高温度日作为关键致灾因子能够更好地评估研究区高温热害的时空特征;高温热害的致灾强度呈现出明显的由南向北减少的空间分布格局;相比于其他子区域,研究区中部高温热害的增强趋势更显著;前期LSCI构建的线性回归模型对高温热害有一定模拟能力;太平洋暖池指数被识别为多个子区域高温热害的首要前兆信号。Identifying possible connections between heat stress and large-scale circulation indices(LSCI) is beneficial for mitigating the impacts of climate anomalies on summer maize cultivation. Based on daily maximum tempe-rature data and summer maize yield records from 1980 to 2019 in Hebei, Henan, Shandong, Anhui, and Jiangsu, we evaluated the applicability of nine types of extreme temperature indices on describing heat stress during growth period through first-order difference processing, correlation analysis and regression analysis. We identified the spatio-temporal modes of key disaster-causing factors through principal component analysis, and further analyzed their responses to the circulation indices using time-lag correlation. The results showed that the spatiotemporal characte-ristics of heat stress could be better evaluated with the maximum cumulative heat degree-day(MHDD) of high-temperature spell as a key disaster-causing factor when the high temperature threshold was set as 32 ℃. There was a significant spatial distribution pattern of disaster intensity of heat stress, decreasing from south to north. The strengthening trend of heat stress in the central study area was more significant than other sub-regions. The multi-linear model based on previous LSCI data could simulate heat stress. The Pacific warm pool index was the primary precursor signal of heat stress in multiple sub-regions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7