检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shu Liu Guangxue Zhang Weihua Li Hailin Gu Dingkun Yuan Sirui Tong Jiangrong Xu
出 处:《Particuology》2025年第1期180-192,共13页颗粒学报(英文版)
基 金:supported by the National Natural Science Foundation of China(grant Nos.52276162 and 52306207).
摘 要:To explore the effectiveness of acoustic agglomeration technology in eliminating urban fire smoke, an experimental setup for eliminating continuous smoke is built. This study uses airborne ultrasonic transducers as the sound source, with resonant frequencies are 13, 16, 18, and 20 kHz, respectively. Typical urban fire smoke is produced by the combustion of materials such as polystyrene (PS), polyvinyl chloride (PVC), carton, cotton, pine sawdust, and birch sawdust. The effects of ultrasonic frequency, sound pressure level, residence time and initial concentration on the elimination of both single material smoke and mixed material smoke types are investigated. Results indicate that the 16 kHz sound waves are most effective for PS, PVC, and carton smoke, whereas the optimum frequency for birch smoke is between 16 and 18 kHz. The optimal frequency of mixed smoke is significantly influenced by particle size and the ratio of large to small particles. When the sound pressure level is 142–154 dB, and the residence time is 4 s, the visibility of all types of smoke increased from 1 m to above the safe escape threshold (2.5 m). Furthermore, higher initial concentrations of smoke result in more effective elimination.
关 键 词:Acoustic agglomeration Fire smoke Airborne ultrasonic transducer VISIBILITY
分 类 号:X928.7[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15