检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何中海 介石 吴亚东[1] HE Zhonghai;JIE Shi;WU Yadong(School of Mechanical Engineering,Shanghai Jiaotong Univ.,Shanghai 200240,China)
机构地区:[1]上海交通大学机械与动力工程学院,上海200240
出 处:《海军工程大学学报》2025年第1期65-71,共7页Journal of Naval University of Engineering
基 金:国家部委基金资助项目(J2019-II-0004-0024,P2022-B-V-004-001)。
摘 要:针对压气机传统性能预测方法存在精度和复杂度之间制约的问题,采用神经网络模型对流线曲率法进行改进优化。首先,利用神经网络作为流线曲率法中经验公式的代理模型,实现了从叶型和来流参数到气动参数的映射;然后,搭建了单转子压气机试验台,对叶片展向气动参数分布进行测试,并与耦合了神经网络模型的流线曲率法计算结果进行了对比。计算和试验结果对比表明:基于神经网络的流线曲率法通过对复杂流场建模,能够实现对流场的准确预测,对单转子试验件在主流区和近壁区最大预测相对误差分别为5%和9.3%,以此形成了新的正问题计算程序,在压气机中取得了有效应用。Traditional performance prediction methods face a trade-off between accuracy and complexity.To solve that problem,a neural network model was introduced to enhance and refine the streamline curvature method.By utilizing neural networks as surrogate models for empirical formulas in the streamline curvature method,a mapping from blade profiles and inflow parameters to aerodynamic parameters was achieved.A single-rotor compressor test bench was established to assess the distribution of aerodynamic parameters across the blade span,and those results were compared with those obtained from the streamline curvature method coupled with a neural network model.The comparison of computational and experimental results demonstrates that the streamline curvature method enhanced by neural networks can precisely model complex flow fields,the maximum predicted relative errors for the single rotor test object in the mainstream region and the near-wall region are 5%and 9.3%respectively,thereby enabling the development of a novel forward problem computation procedure that has found effective application in compressors.
分 类 号:V231.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.28.129