检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王稳 李超 王园 张正慧 WANG Wen;LI Chao;WANG Yuan;ZHANG Zhenghui(Ningxia Branch,Power China Renewable Energy Co.,Ltd.,Yinchuan 750004,China)
机构地区:[1]中电建新能源集团股份有限公司宁夏分公司,银川750004
出 处:《安全与环境学报》2025年第2期457-466,共10页Journal of Safety and Environment
摘 要:作为现代能源领域的重要一环,电池储能系统为可再生能源的存储和利用提供了有力支持,但电池发生热失控(Thermal Runaway,TR)产生的连锁反应会加重火灾事故后果。为探究储能系统TR火灾演化规律,利用MATLAB搭建电池热阻网络模型,结合PyroSim仿真软件对锂电池TR燃烧进行数值模拟,分析了储能系统火灾过程中温度、热释放速率(Heat Release Rate,HRR)和一氧化碳(CO)的变化规律。结果表明:100%充电状态(State of Charge,SOC)下,280 Ah的磷酸铁锂(LiFePO4,LFP)电池热失控产生的HRR峰值为84.06 kW;电池模组和储能舱电池TR产生的HRR峰值分别为174.36 kW和5184 kW,舱内中心温度最高为805℃,CO体积分数最大为0.00186,z方向火焰传播速度最大,其次为x方向和y方向。仿真结果能为不同尺度下LFP电池热失控火灾的数值模拟提供理论指导。As a vital component of the modern energy sector,battery energy storage systems play a crucial role in the storage and utilization of renewable energy.However,the cascading effects of Thermal Runaway(TR)in batteries can significantly worsen the outcomes of fire incidents.To investigate the evolution of thermal runaway fires in energy storage systems,we simulated the thermal runaway combustion of a lithium iron phosphate single battery and validated the model.Building on this foundation,we developed a thermal resistance network model of the battery using MATLAB.Subsequently,we numerically simulated the thermal runaway fire of both the lithium battery module and the cabin-level energy storage power station using PyroSim simulation software.The analysis focuses on the propagation dynamics of battery thermal runaway and examines the variations in flame spread,heat release rate,temperature,and carbon monoxide(CO)levels during the fire events in energy storage systems.The results indicate that under a 100%State of Charge(SOC)condition,the Peak Heat Release Rate(PHRR)generated by the thermal runaway of a 280 Ah LiFePO 4(LFP)battery is 84.06 kW.In contrast,the PHRR from the battery module and the storage tank during thermal runaway reaches 174.36 kW and 5184 kW,respectively.Additionally,the storage tank temperature can rise to 805℃,and the volume fraction of carbon monoxide(CO)reaches 0.00186.Furthermore,the speed of flame propagation within the cabin occurs in the z,x,and y directions.These simulation results offer valuable theoretical insights for the numerical modeling of thermal runaway fires in LFP batteries across different scales.To effectively manage thermal runaway fires in lithium battery storage cabins,continuous monitoring of flammable and explosive gases across all battery clusters is essential.Additionally,temperature monitoring points and fire suppression systems should be installed for each battery box to minimize temperature increases and flame spread during the early stages of thermal runaway.
关 键 词:安全工程 储能系统 热失控火灾 热阻网络 PyroSim
分 类 号:X934[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.154