机构地区:[1]华中师范大学化学学院,教育部光能利用与减污降碳工程研究中心,农药与化学生物学教育部重点实验室,武汉430079 [2]中国科学院物理化学技术研究所,光化学转化与功能材料重点实验室,北京100190
出 处:《物理化学学报》2025年第1期68-78,共11页Acta Physico-Chimica Sinica
基 金:国家自然科学基金(21972052,22272061);辐射化学与功能材料湖北省重点实验室开放基金(2021KF01)资助项目。
摘 要:太阳能驱动的二氧化碳(CO_(2))甲烷化反应不仅有助于减少多余的碳排放,而且是生产燃料的重要途径。层状金属双氢氧化物(layered double hydroxides,LDH)可以在高温还原气(H_(2)/Ar)氛围中还原,转化为金属负载于氧化物(MO)的催化剂。这些催化剂在CO_(2)加氢反应中作为优秀的光热催化剂被广泛应用。然而,有关LDH的层间阴离子类型如何影响CO_(2)甲烷化活性的研究还相对有限。本文研究了包含不同层间阴离子的镍(Ni)铝(Al)LDH前驱体,通过在H_(2)/Ar气氛中还原处理,制备了一系列Ni负载在氧化铝(Al_(2)O_(3))上的MO催化剂,这些催化剂被命名为NiAl-x-MO(其中x代表CO_(3)、NO_(3)、Cl和SO_(4),分别代表碳酸根、硝酸根、氯离子和硫酸根等阴离子)。其中,NiAl-CO_(3)-MO催化剂表现出50.1%的CO_(2)转化率,99.9%的甲烷(CH_(4))选择性以及94.4 mmol∙g^(−1)∙h^(−1)的CH_(4)产出速率。与之相比,NiAl-Cl-MO和NiAl-SO_(4)-MO催化剂的CO_(2)甲烷化活性极低。H_(2)程序升温脱附(temperature programmed desorption with H_(2),H_(2)-TPD)实验和密度泛函理论计算(density functional theory,DFT)结果表明,低CO_(2)转化率是由于残留的氯(Cl)或硫(S)与金属Ni形成的强配位键阻碍了H_(2)的吸附和活化。因此,在设计LDH衍生的催化剂,特别是用于氢化反应的Ni基催化剂时,应优先考虑层间阴离子在LDH中的重要作用。The concentration of carbon dioxide(CO_(2))in the atmosphere is progressively increasing due to industrial development,leading to environmental concerns such as the greenhouse effect.Consequently,it is crucial to decrease dependence on the fossil fuels and mitigate the CO_(2)emissions.Photothermocatalysis technology facilitates the conversion of light energy into heat energy on the surface of catalysts,thereby driving chemical reactions.This catalytic approach effectively harnesses ample solar energy,consequently reducing nonrenewable energy consumption.Solar-driven CO_(2)methanation is an important route to simultaneously mitigate excessive carbon emissions and produce fuels.Layered double hydroxides(LDH)can be reduced at high temperature in a reductive atmosphere of a hydrogen/argon(H2/Ar)mixture to prepare metal-loaded oxide(MO)catalysts,which are widely used in CO_(2)hydrogenation reactions as excellent photothermal catalysts.However,there is limited study on how the interlayer anion type of LDH affects the activity of CO_(2)methanation.Herein,a series of LDH precursors,intercalated with various anions,were synthesized using a co-precipitation method.The LDH precursors were reduced in a H2/Ar atmosphere to acquire a group of nickel(Ni)loaded on alumina(Al2O_(3))catalysts,referred to as NiAl-x-MO(x=CO_(3),NO_(3),Cl,and SO4,which represents carbonate,nitrate,chloride,and sulfate anions,respectively).Energy dispersive spectrometer(EDS)elemental mapping and X-ray photoelectron spectroscopy(XPS)results revealed the presence of nitrogen(N),chlorine(Cl),and sulfur(S)species on the surfaces of NiAl-NO_(3)-MO,NiAl-Cl-MO,and NiAl-SO4-MO catalysts,respectively.Photothermocatalytic tests were conducted on the catalysts to assess the potential influence of the residual species on CO_(2)methanation.Among them,the NiAl-CO_(3)-MO catalyst demonstrated a CO_(2)conversion of 50.1%,methane(CH4)selectivity of 99.9%,along with a CH4 production rate of 94.4 mmol∙g^(−1)∙h^(−1).The performance of the NiAl-NO_(3)-MO catalyst
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...