检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘杰 易思广 徐文慧 张其真 卢文壮[1] LIU Jie;YI Siguang;XU Wenhui;ZHANG Qizhen;LU Wenzhuang(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics Nanjing,210016,China)
出 处:《振动.测试与诊断》2025年第1期169-174,207,共7页Journal of Vibration,Measurement & Diagnosis
基 金:国家自然科学基金资助项目(51975287);南京航空航天大学博士学位论文创新与创优基金资助项目(BCXJ22-08)。
摘 要:钛合金由于导热率低,在磨削过程中工件表面容易产生烧伤或裂纹。采用图像法进行在线表面烧伤识别时,受到磨削液等现场因素的影响,采集的工件图像存在运动模糊或者目标区域被遮挡等现象,影响深度学习模型的识别效果。针对现场图像受损的问题,采用对偶学习和跳跃连接的方法,设计生成对抗网络的生成器、判别器和损失函数,对细节信息进行修复,重建退化图像。试验结果表明,经过重建的钛合金磨削现场图像的峰值信噪比(peak signal to noise ratio,简称PSNR)平均值达到25以上,结构相似度(structural similarity,简称SSIM)平均值达到0.77以上。采用基于模型微调的方法对重建后图像进行烧伤识别,准确率达到90%以上。Due to the low thermal conductivity of titanium alloys,burns or cracks are likely to occur on the sur⁃face of the workpiece during the grinding process.When the image method is used for online surface burn recog⁃nition,due to the influence of on-site factors such as grinding fluid,the collected workpiece image has motion blur or the target area is occluded,which affects the recognition accuracy of the deep learning model.To address the issue of image damage in the scene,the method of dual learning and skip connections is used to design the generator,discriminator,and loss function of the generative adversarial network to repair the detailed informa⁃tion and reconstruct the degraded image.The experimental results show that the peak signal to noise ratio(PSNR)average value of the reconstructed titanium alloy grinding field image is above 25,and the average structural similarity(SSIM)value is above 0.77.The burn recognition method based on model fine-tuning is used to recognize the reconstructed image,and the recognition rate is more than 90%.
关 键 词:钛合金 磨削烧伤 生成对抗网络 图像重建 图像识别
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43