检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘劲松[1,2,3] 臧雪颖 陈大勇 宋鸿武[2] 刘昆 云红杰[1] LIU Jinsong;ZANG Xueying;CHEN Dayong;SONG Hongwu;LIU Kun;YUN Hongjie(School of Material Science and Engineering,Shenyang Ligong University,Shenyang 110159,China;Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Changzhou Enreach Copper Co.,Ltd.,Production and Processing Department,Jiangsu Changzhou 213149,China)
机构地区:[1]沈阳理工大学材料科学与工程学院,沈阳110159 [2]中国科学院金属研究所师昌绪材料创新中心,沈阳110016 [3]常州润来科技有限公司,江苏常州213149
出 处:《精密成形工程》2025年第2期130-140,共11页Journal of Netshape Forming Engineering
基 金:辽宁省教育厅基本科研项目(LJKMZ20220591);常州市领军型创新人才引进培育项目(CQ20220057)。
摘 要:目的锯齿伤作为铜管材首要的缺陷,会造成管材后续二次加工开裂和服役破裂等严重问题,对缺陷进行高效、定量化的统计及分析是产品质量管控的关键性难点,也是铜管加工行业的空白。针对这一问题,基于机器视觉方法,设计并开发了铜管材锯齿伤缺陷智能识别算法和系统。方法首先,基于自适应阈值算法,设计采用一系列的降噪算法,实现锯齿伤管材横截面轮廓识别。其次,定义了锯齿伤缺陷占比的计算规则,通过算法优化,实现了开口和闭口2种锯齿伤的成功识别和缺陷占比的计算。最后,借助Python语言构建了图形用户界面(GUI)系统,完成了锯齿伤缺陷统计的软件化。结果通过对智能识别算法和实验获得的锯齿伤缺陷占比进行对比,发现相对误差保持在1%~2%,证明缺陷智能识别算法具有可行性和高精度。结论该系统可以有效地实现铜管锯齿伤缺陷识别和占比的定量、高效统计与分析。Serration defects,as the primary flaw in copper tubing,can lead to severe issues such as cracking during second-ary processing and in-service failures.Efficient and quantitative statistical analysis of these defects is a critical challenge in quality control and a gap in the copper tube processing industry.The work aims to design and develop an intelligent defect recognition algorithm and system for copper tube serration defects based on machine vision methods to address this issue.First,using an adaptive threshold algorithm,a series of denoising algorithms were implemented to achieve the identification of the cross-sectional profile of tubes with serration defects.Subsequently,calculation rules for the proportion of serration defects were defined.Through algorithm optimization,both open and closed serration defects were successfully identified and quantified.Fi-nally,a Graphical User Interface(GUI)system was constructed with the help of the Python programming language,achieving the software implementation of serration defect statistics.By comparing the serration defect proportions obtained from the intel-ligent recognition method with experimental data,the relative error was found to be 1%to 2%,proving the feasibility and accu-racy of the defect recognition algorithm.This system can effectively realize the quantitative and efficient statistical analysis of serration defects in copper tubes.
分 类 号:TG114.4[金属学及工艺—物理冶金] TP391.4[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15