基于小波分析的变电站倒闸操作过程中隔离开关故障识别  

Isolation Switch Fault Identification in Substation Switching Operation Based on Wavelet Analysis

在线阅读下载全文

作  者:鲍超凡 孙西宁 BAO Chaofan;SUN Xining(State Grid Jibei Electric Power Co.,Ltd.Ultra High Voltage Branch,Beijing 102488,China)

机构地区:[1]国网冀北电力有限公司超高压分公司,北京102488

出  处:《电工技术》2025年第1期52-54,59,共4页Electric Engineering

摘  要:常规的变电站倒闸操作隔离开关故障识别方法主要使用OUTPUT外围传输扩展I/O软件扫描故障特征,易受电气回路选择作用影响,导致识别的电流-振动联合故障特征向量偏差较高。为此,提出了一种基于小波分析的变电站倒闸操作隔离开关故障识别方法,即采集变电站倒闸操作隔离开关分合闸振动信号,利用小波分析提取变电站倒闸隔离开关故障特征,从而完成隔离开关故障识别。实验结果表明,所提方法的识别效果好,识别的电流-振动联合故障特征向量与实际特征向量接近,且可靠性高,有一定的应用价值,为解决变电站运行的基础缺陷、降低变电站运行事故发生频率作出了一定的贡献。The conventional isolation switch fault identification method of substation tripping operation mainly uses OUTPUT peripheral transmission extension I/O software to scan the fault characteristics,which is easily affected by the seleetion of electrical loop,resulting in a high deviation of the identified current-vibration combined fault feature vector.Therefore,a fault identification method of substation switching isolation switch based on wavelet analysis is proposed.In other words,the vibration signal of substation switching isolation switch is collected,and the fault characteristics of substation switching isolation switch are extracted by wavelet analysis,so that the fault identification of isolation switch is completed.The experimental results show that the combined cur rent-vibration fault feature vector identified by the designed fault identification method is close to the actual feature vector,which proves that the designed fault identification method has good recognition effect,reliability and certain application value.In order to solve the basic defects of substation operation and reduce the frequency of substation operation accidents,it makes a certain contribution.

关 键 词:小波分析 变电站 倒闸操作 隔离开关 故障识别 

分 类 号:TM643[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象