检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:莫品强 林浩东 胡静 高柳 庄培芝 MO Pinqiang;LIN Haodong;HU Jing;GAO Liu;ZHUANG Peizhi(State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining and Technology,Xuzhou 221116,China;Shenzhen Research Institute,China University of Mining and Technology,Shenzhen 518057,China;Chengdu Engineering Co.,Ltd.,Chengdu 610072,China;School of Qilu Transportation,Shandong University,Jinan 250002,China)
机构地区:[1]中国矿业大学深地工程智能建造与健康运维全国重点实验室,江苏徐州221116 [2]中国矿业大学深圳研究院,广东深圳518057 [3]中国电建集团成都勘测设计研究院有限公司,四川成都610072 [4]山东大学齐鲁交通学院,山东济南250002
出 处:《同济大学学报(自然科学版)》2025年第2期196-205,共10页Journal of Tongji University:Natural Science
基 金:国家自然科学基金(51908546,52178374);中国矿业大学未来科学家计划(2022WLJCRCZL042);广东省自然科学基金(2024A1515011552);江苏省科技计划(BK20242090)。
摘 要:分析了单桩承载力的主要影响因素,利用降维算法对静力触探数据进行预处理,使用树模型的重要性分析函数筛选主要特征,由贝叶斯优化算法确定超参数,提出了一种基于机器学习算法的打入桩竖向承载力预测模型。经过准度测试、蒙特卡洛模拟检验及与经验关系模型的对比,对预测模型的有效性和鲁棒性进行了评估。结果表明,支持向量机(SVM)模型、随机森林(RF)模型、极限梯度提升算法(XGBoost)模型均能较准确地预测打入桩竖向承载力,且准确性显著高于经验关系模型。根据综合分析结果,建议选择XGBoost模型用于打入桩竖向承载力的预测。The main factors influencing the bearing capacity of a single pile were analyzed,the cone penetration test data were preprocessed using the dimensionality reduction algorithm,the main features were screened using the importance analysis function of tree model,and the hyperparameters were determined using the Bayesian optimization algorithm.A prediction model of vertical bearing capacity of driven pile was proposed based on the machine learning algorithm.The validity and robustness of the prediction model were evaluated using accuracy test and Monte Carlo simulation test,and compared with the empirical models.The results show that the support vector machine(SVM)model,the random forest(RF)model,and the extreme gradient boosting(XGBoost)model can accurately predict the vertical bearing capacity of driven piles,whose accuracy is significantly higher than that of the empirical relationship model.The comprehensive analysis indicates that the XGBoost model should be selected to predict the vertical bearing capacity of driven piles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249