基于量子布谷鸟算法的冻土区水利工程施工进度优化方法研究  

Research on Construction Schedule Optimization Method for Hydraulic Engineering in Permafrost Areas Based on Quantum Cuckoo Search Algorithm

在线阅读下载全文

作  者:高振梅 Gao Zhenmei(Feixian County Water Conservancy Project Guarantee Center,Feixian 273400,Shandong)

机构地区:[1]费县水利工程保障中心石岚水库服务股,山东费县273400

出  处:《陕西水利》2025年第2期19-21,25,共4页Shaanxi Water Resources

摘  要:为缓解冻土区水利工程施工进度控制难问题,提出一种基于量子布谷鸟算法的冻土区水利工程施工进度优化方法。考虑成本、技术水平、资源及冻土环境等因素对施工进度影响,以工期最短、成本最小和质量最高为目标,构建冻土区水利工程施工进度优化模型。为提升模型求解效率,采用量子搜索改进布谷鸟算法予以求解。以水利枢纽为研究对象,设置三种情景验证模型有效性,结果表明:该方法能针对不同施工情景实现进度优化。结果可为实际施工提供理论基础。To address the challenge of construction schedule control in hydraulic engineering projects within permafrost areas,this study proposes an optimization method based on the Quantum Cuckoo Search algorithm.Considering factors such as cost,technical level,resources,and the permafrost environment that impact construction schedules,an optimization model is constructed with the objectives of minimizing project duration,reducing costs,and ensuring high-quality standards for hydraulic engineering construction in permafrost regions.To improve the efficiency of solving the model,the Quantum Search mechanism is used to enhance the traditional Cuckoo Search algorithm.Using a hydraulic hub as the research subject,three scenarios are set up to verify the effectiveness of the proposed model.The results show that this method can achieve schedule optimization for different construction scenarios.This study provides a theoretical foundation for actual construction practices.

关 键 词:施工进度优化 布谷鸟算法 量子算法 冻土区 水利工程 

分 类 号:TV522[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象