Polymer Resins Synthesized via the Michael 1,4-addition from Tall Oil Fatty Acids Using Various Epoxidation Techniques  

在线阅读下载全文

作  者:Aiga Ivdre Ralfs Pomilovskis Arnis Abolins 

机构地区:[1]Latvian State Institute of Wood Chemistry,Riga,LV-1047,Latvia

出  处:《Journal of Renewable Materials》2025年第2期349-361,共13页可再生材料杂志(英文)

基  金:funded by the Latvian State Institute of Wood Chemistry Bioeconomic grant no.04-24“Development of Composites from Polymer Resin Synthesized from Tall Oil Fatty Acids and Reinforced with Various Fillers”(FiTeCo).

摘  要:Studies on the use of renewable materials for various applications,including polymers,have gained momentum due to global climate change and the push towards a circular economy.In this study,polymer resins were developed through Michael 1,4-addition.The precursors were synthesized from tall oil-based acetoacetates derived from epoxidized tall oil fatty acids or their methyl esters.Two different epoxidation methods were employed:enzymatic epoxidation of tall oil fatty acids and ion-exchange resin epoxidation of tall oil fatty acid methyl esters.Following oxirane opening and transesterification with trimethylolpropane,further esterification or transesterification was carried out to obtain the acetoacetates.These synthesized acetoacetates were then reacted with acrylates of various functionalities to obtain polymer resins with differing degrees of crosslinking.The developed polymer resins were characterized using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis.The results indicated that the glass transition temperature and storage modulus of the polymer resins were significantly influenced by both the functionality of the acrylates used and the epoxidation technique employed.Higher acrylate functionality resulted in increased stiffness,while enzymatic epoxidation enhanced the polymer’s mechanical properties,nearly doubling the storage modulus,achieving approximately 470 MPa,compared to the ion-exchange resin technique.Therefore,selecting the appropriate acrylate functionality and epoxidation method could tailor the mechanical properties of the polymer resins.

关 键 词:Tall oil fatty acids bio-based resin ENZYMES EPOXIDATION ENZYMATIC ion resin Michael 1 4-addition 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象