基于分布式信息的车辆编队及避险超车算法研究  

Research on Vehicle Formation,Emergency Evasion and Overtaking Algorithms Based on Distributed Information

在线阅读下载全文

作  者:赵彬 邵旸 ZHAO Bin;SHAO Yang(School of Science,China University of Geosciences Beijing,Beijing 100083)

机构地区:[1]中国地质大学(北京)数理学院,北京100083

出  处:《系统科学与数学》2025年第1期111-126,共16页Journal of Systems Science and Mathematical Sciences

基  金:中央高校基本科研业务费(590121027)资助课题。

摘  要:随着道路交通复杂程度的增加以及智慧交通的发展,车辆的安全行驶问题受到了广泛关注.文章旨在给出动态环境下分布式车辆编队安全行驶的一系列算法,并验证其有效性.首先,借助多智能体系统分布式编队算法,给出了车辆在道路行驶中的编队运动模型.进而,改进了人工势场模型,为势场中的吸引力和排斥力函数引入速度参数,解决了车辆编队在动态车道环境下的避障问题和超车问题.同时,参考鱼群的逃逸行为,提出了编队内车辆的跟驰与换道模型,解决了分布式信息下的车辆编队紧急避险问题.最后,给出了车辆在动态交通环境下,基于分布式信息交互的车辆编队紧急避险等行为的模拟仿真,验证了所提出算法的有效性.With the increasing complexity of road traffic and the development of intelligent transportation,safe driving has received extensive attentions.This pa-per aims to give a series of algorithms regarding safe driving of distributed vehicle formation in dynamical environments,and verify the effectiveness of the algorithms.First,by introducing the distributed formation protocol of multi-agent systems,the formation model of vehicles on the road is provided.Then,this paper proposes an improved artificial potential field algorithm by adding the velocity parameter into the attractive and repulsive force functions in the potential field,which solves the obstacle avoidance and overtaking problem of vehicle formation in dynamical lane en-vironments.Meanwhile,based on the escape behavior of fish swarming,the model of vehicle following and lane changing are proposed,and the model solves the problem of vehicle formation emergency avoidance under distributed information.Finally,simu-lations on emergency evasion of vehicles based on distributed information interactions are conducted in dynamical traffic environments,which verify the effectiveness of the proposed algorithms.

关 键 词:分布式信息 人工势场 避险超车 车辆编队 

分 类 号:U495[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象