基于能量法的薄壁管压缩失稳褶皱预测模型  

A Prediction Model for Compression Instability Folds of Thin-Walled Tubes Based on Energy Method

在线阅读下载全文

作  者:贺宏伟 吴航宇 余海燕[1] He Hongwei;Wu Hangyu;Yu Haiyan(School of Automotive Studies,Tongji University,Shanghai 201804)

机构地区:[1]同济大学汽车学院,上海201804

出  处:《汽车工程》2025年第2期376-382,390,共8页Automotive Engineering

基  金:国家重点研发计划项目(2022YFE0208000)资助。

摘  要:薄壁管具有质量轻、强度高等优势,是汽车轻量化和工业生产的常用结构。研究薄壁管的轴压失稳特性有助于其在优化结构设计和安全性上的应用。因此,本文基于能量法提出了一种新的薄壁圆管轴压褶皱模型,用于描述薄壁管轴压变形褶皱的形貌特征和平均压缩载荷。通过试验和有限元模拟验证了新理论模型和塑性铰模型对褶皱长度和压缩平均载荷的预测精度。结果表明:相比塑性铰模型,新理论模型预测的褶皱长度更接近试验和有限元结果,预测平均误差减少55.2%。采用摩擦因数修正后,新理论模型对压缩平均载荷的预测精度提升29.7%。指导工程实践时,应采用考虑摩擦效应修正的褶皱预测模型。Thin-walled tubes,commonly used structures in automobile lightweight and industrial produc-tion,have the advantages of lightweight and high strength.The study of the axial compression instability characteris-tics of thin-walled tubes is helpful for its application in optimizing structural design and safety.Therefore,a novel axial compression fold model of thin-walled tubes is proposed to describe the morphological characteristics and aver-age compressive load of deformation folds for thin-walled tubes based on the energy method.The prediction accuracy of the new theoretical model and the plastic hinge model for the fold length and compressive average load is validat-ed by experiments and finite element simulation.The results show that the fold length predicted by the new theoreti-cal model is closer to the experimental and finite element results compared with the plastic hinge model,with the av-erage prediction error reduced by 55.2%.The prediction accuracy for compressive average load is improved by 29.7%after the friction coefficient correction.When guiding engineering practice,a fold prediction model consider-ing friction effect correction should be adopted.

关 键 词:褶皱预测模型 薄壁圆管 能量法 轴压失稳 压缩载荷 

分 类 号:U462.2[机械工程—车辆工程] U466[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象