检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李奕轩 田云娜[1] LI Yi-xuan;TIAN Yun-na(School of Mathematics and Computer Science,Yan'an University,Yan'an 716000,China)
机构地区:[1]延安大学数学与计算机科学学院,陕西延安716000
出 处:《数学的实践与认识》2025年第1期158-171,共14页Mathematics in Practice and Theory
基 金:国家自然科学基金(61763046,62041212);延安大学研究生专项研究项目(YCX20222071);国家大学生创新创业训练计划项目(202110719031)。
摘 要:针对鱼鹰优化算法无法求解多目标优化问题,提出一种多目标鱼鹰优化算法.首先引入存档机制存储非支配解,促进算法的收敛;然后使用顶级鱼鹰个体选择机制从存档中选择最优鱼鹰个体;最后使用自适应差分t分布变异增强算法的全局搜索能力.将所提算法与其他5种算法在CEC2020多模态多目标测试集中15个函数上进行测试,实验结果表明,所提算法得到的帕累托最优解集具有良好的多样性和收敛性.此外,通过焊接梁设计问题的实验对比分析,验证了所提算法在实际应用中的有效性和实用性.Aiming at the problem that the osprey optimization algorithm cannot solve the multi-objective optimization problem,a multi-objective osprey optimization algorithm is proposed.Firstly,the archiving mechanism is introduced to store non-dominated solutions and promote the convergence of the algorithm.Then use the top osprey individual selection mechanism to select the optimal osprey individual from the archive;finally,the adaptive differential t distribution mutation is used to enhance the global search ability of the algorithm.The proposed algorithm and other five algorithms are tested on 15 functions in CEC2020multi-modal multi-objective test set.The experimental results show that the Pareto optimal solution set obtained by the proposed algorithm has good diversity and convergence,and can effectively solve the multi-objective optimization problem.In addition,the effectiveness and practicability of the proposed algorithm in practical application are verified by the experimental comparison and analysis of the design problem of welded beam.
关 键 词:鱼鹰优化算法 存档机制 拥挤度 差分t分布变异 焊接梁设计问题
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151