检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuqing Lin Tianhao Wen Lei Chen Yang Liu Q.H.Wu
机构地区:[1]School of Electric Power Engineering,South China University of Technology,Guangzhou,510640,China
出 处:《CSEE Journal of Power and Energy Systems》2025年第1期38-50,共13页中国电机工程学会电力与能源系统学报(英文)
摘 要:Part II of this paper presents a reduced-order stability region (ROSR) based method to estimate the full-order stability region (FOSR) of a large-scale power system. First, we introduce the definitions of FOSR and ROSR, followed by a comprehensive theory that reveals the relationships between them. Since the full-order system can be rewritten as a standard two timescale model and the reduced-order system is regarded as the slow subsystem of it, the proposed theory is derived based on the idea of singular perturbation. With rigorous mathematical proof, the properties of FOSR and ROSR are revealed. Moreover, a modified Energy Augmented Dynamic (EAD) algorithm and a constrained equidistant projection (CEP) approach are employed to estimate the ROSR and FOSR, respectively. The modified EAD algorithm and CEP form a so-called reduced-order stability region mapping (ROSRM) method. Finally, the proposed ROSRM method is applied to the IEEE 10-machine-39-bus power system, and simulation studies confirm its superiority to the traditional energy function method in terms of computational speed and reliability of results.
关 键 词:Large-scale power system singular perturbation theory stability region sum of squares transient stability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.146.206.0