检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄诗麒 冉宪文[1] 张昆[1] 唐尧 甘孝伟 张舵[1] HUANG Shiqi;RAN Xianwen;ZHANG Kun;TANG Yao;GAN Xiaowei;ZHANG Duo(College of Science,National University of Defense Technology,Changsha 410073,China)
出 处:《现代应用物理》2024年第6期147-155,共9页Modern Applied Physics
基 金:国家自然科学基金资助项目(11972371)。
摘 要:针对复杂刚性壁流场内的激波传播计算经验公式适用性差、数值计算CFD方法计算成本高且难以满足毁伤评估中强时间约束条件的现状,引入几何激波动力学(geometrical shock dynamics,GSD)模型,对2维情况下冲击波传播问题,开展了空气中冲击波与30°楔面,45°,90°凸壁面及半圆凸壁面4种典型障碍物作用后激波强度与波阵面演化计算,并与时-空守恒元/解元(space-time conservation element and solution element,CE/SE)方法的数值模拟结果对比。结果表明,GSD模型是一种能够以较低的计算成本,有效预测冲击波位置、形状及强度信息的近似模型。该研究结果对复杂环境下冲击波威力快速计算工作具有参考意义。Shock wave overpressure is a critical parameter in the damage assessment system.The geometrical shock dynamics(GSD)model is introduced to address the issues associated with the poor applicability of empirical formulas for shock wave propagation in complex rigid-wall flow fields,as well as the high computational costs and difficulty in meeting the stringent time constraints of damage assessment using numerical computational fluid dynamics methods.The propagation of shock waves in two-dimensional scenarios is investigated,specifically examining the effects of shock waves in air interacting with four typical obstacles:30°wedge,45°and 90°convex wall,and semicircular convex wall.The shock wave intensity and wavefront evolution are calculated and compared with numerical results obtained using the space-time conservation element and solution element(CE/SE)method.The results show that the GSD model is an effective approximation method that can predict the position,shape and intensity of shock wavewith lower computational costs.This research provides valuable insights for the rapid computation of shock wave effects in complex environments.
关 键 词:冲击波 几何激波动力学 时-空守恒元/解元方法 数值模拟 拉格朗日格式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15