检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jinyi Xu Zuowei Zhang Ze Lin Yixiang Chen Weiping Ding
机构地区:[1]the Software Engineering Institute,East China Normal University,Shanghai 200062 [2]Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China [3]IEEE [4]the School of Automation,Northwestern Polytechnical University,Xi’an 710072,China [5]the School of Artificial Intelligence and Computer Science,Nantong University,Nantong 226019 [6]the Faculty of Data Science,City University of Macao,Macao 999078,China
出 处:《IEEE/CAA Journal of Automatica Sinica》2024年第12期2435-2450,共16页自动化学报(英文版)
基 金:supported in part by the Youth Foundation of Shanxi Province(5113240053);the Fundamental Research Funds for the Central Universities(G2023KY05102);the Natural Science Foundation of China(61976120);the Natural Science Foundation of Jiangsu Province(BK20231337);the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)。
摘 要:It is challenging to cluster multi-view data in which the clusters have overlapping areas.Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters,increasing clustering errors.Our solution,the multi-view dynamic kernelized evidential clustering method(MvDKE),addresses this by assigning these objects to meta-clusters,a union of several related singleton clusters,effectively capturing the local imprecision in overlapping areas.MvDKE offers two main advantages:firstly,it significantly reduces computational complexity through a dynamic framework for evidential clustering,and secondly,it adeptly handles non-spherical data using kernel techniques within its objective function.Experiments on various datasets confirm MvDKE's superior ability to accurately characterize the local imprecision in multi-view non-spherical data,achieving better efficiency and outperforming existing methods in overall performance.
关 键 词:Evidential clustering imprecision characterizing kernel technique multi-view clustering
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49