Human Observation-Inspired Universal Image Acquisition Paradigm Integrating Multi-Objective Motion Planning and Control for Robotics  

在线阅读下载全文

作  者:Haotian Liu Yuchuang Tong Zhengtao Zhang 

机构地区:[1]CAS Engineering Laboratory for Intelligent Industrial Vision,Institute of Automation,Chinese Academy of Sciences,Beijing 100190 [2]the School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China [3]IEEE

出  处:《IEEE/CAA Journal of Automatica Sinica》2024年第12期2463-2475,共13页自动化学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China(62303457,U21A20482);China Postdoctoral Science Foundation(2023M733737);the National Key Research and Development Program of China(2022YFB3303800)。

摘  要:Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm.

关 键 词:Industrial robotics human observation-inspired meta-heuristic recurrent neural network motion planning and control universal image acquisition 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象