检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haotian Liu Yuchuang Tong Zhengtao Zhang
机构地区:[1]CAS Engineering Laboratory for Intelligent Industrial Vision,Institute of Automation,Chinese Academy of Sciences,Beijing 100190 [2]the School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049,China [3]IEEE
出 处:《IEEE/CAA Journal of Automatica Sinica》2024年第12期2463-2475,共13页自动化学报(英文版)
基 金:supported in part by the National Natural Science Foundation of China(62303457,U21A20482);China Postdoctoral Science Foundation(2023M733737);the National Key Research and Development Program of China(2022YFB3303800)。
摘 要:Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing.Current imaging systems often exhibit inflexibility,being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design(CAD)models or in instances of deformation.Inspired by the multidimensional observation of humans,our study introduces a universal image acquisition paradigm tailored for robotics,seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile,efficient,and highly accurate image acquisition across diverse structures and scenarios.Specifically,we introduce an energybased adaptive trajectory optimization(EBATO)method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture.Additionally,a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network(BAORNN)is proposed to track the imaging trajectory while addressing posture,obstacle avoidance,and physical constraints in industrial scenarios.Simulations,real-world experiments,and comparisons demonstrate the effectiveness and practicality of the proposed paradigm.
关 键 词:Industrial robotics human observation-inspired meta-heuristic recurrent neural network motion planning and control universal image acquisition
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49