检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shuo Cao Xuesong Wang Yuhu Cheng
机构地区:[1]the Engineering Research Center of Intelligent Control for Underground Space,Ministry of Education,and the School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China [2]IEEE
出 处:《IEEE/CAA Journal of Automatica Sinica》2024年第12期2497-2511,共15页自动化学报(英文版)
基 金:supported in part by the National Natural Science Foundation of China(62176259,62373364);the Key Research and Development Program of Jiangsu Province(BE2022095)。
摘 要:To alleviate the extrapolation error and instability inherent in Q-function directly learned by off-policy Q-learning(QL-style)on static datasets,this article utilizes the on-policy state-action-reward-state-action(SARSA-style)to develop an offline reinforcement learning(RL)method termed robust offline Actor-Critic with on-policy regularized policy evaluation(OPRAC).With the help of SARSA-style bootstrap actions,a conservative on-policy Q-function and a penalty term for matching the on-policy and off-policy actions are jointly constructed to regularize the optimal Q-function of off-policy QL-style.This naturally equips the off-policy QL-style policy evaluation with the intrinsic pessimistic conservatism of on-policy SARSA-style,thus facilitating the acquisition of stable estimated Q-function.Even with limited data sampling errors,the convergence of Q-function learned by OPRAC and the controllability of bias upper bound between the learned Q-function and its true Q-value can be theoretically guaranteed.In addition,the sub-optimality of learned optimal policy merely stems from sampling errors.Experiments on the well-known D4RL Gym-MuJoCo benchmark demonstrate that OPRAC can rapidly learn robust and effective tasksolving policies owing to the stable estimate of Q-value,outperforming state-of-the-art offline RLs by at least 15%.
关 键 词:Offline reinforcement learning off-policy QL-style on-policy SARSA-style policy evaluation(PE) Q-value estimation
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.60.252