面向物联网的改进拜占庭容错共识算法  

Improved Byzantine fault-tolerant consensus algorithm for internet of things

作  者:谢勇 孙传恒[2,3] 罗娜 邢斌[2,3] XIE Yong;SUN Chuan-heng;LUO Na;XING Bin(College of Computer and Information Technology,China Three Gorges University,Yichang 443002,China;National Engineering Research Center for Information Technology in Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;National Engineering Laboratory for Agri-product Quality Traceability,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China)

机构地区:[1]三峡大学计算机与信息学院,湖北宜昌443002 [2]北京市农林科学院国家农业信息化工程技术研究中心,北京100097 [3]北京市农林科学院农产品质量安全追溯技术及应用国家工程研究中心,北京100097

出  处:《计算机工程与设计》2025年第2期360-367,共8页Computer Engineering and Design

基  金:国家重点研发计划基金项目(2023YFD2001304);江苏省科技计划基金项目(BE2023315)。

摘  要:为更好提升区块链和物联网的融合度,提出一种基于信任和主节点选取的拜占庭容错容错共识算法(trusted and primary node election Byzantine fault tolerance,TBFT)。对实用拜占庭容错(practical Byzantine fault tolerance,PBFT)算法进行改进,优先选择快速节点作为主节点;加入直接信任模型实现拜占庭节点、宕机节点的剔除机制,优化一致性协议和视图切换协议。实验及分析结果表明,当网络中的诚实节点数量为34个、宕机和拜占庭节点共16个时,该算法相比PBFT,共识时延下降72%,吞吐量高约37%,系统安全性和稳定性得到了提升。To improve the integration of blockchain and internet of things,a consensus algorithm TBFT(trusted and primary node election Byzantine fault tolerance)based on trust and fast nodes was proposed.The PBFT(practical Byzantine fault tole-rance)was improved by preferentially selecting fast nodes as primary nodes,and the direct trust model was added to achieve the elimination mechanism of Byzantine nodes and downtime nodes,and the consistency protocol was optimized.Results of simulation and analysis show that when the number of honest nodes in the network is 34 and the number of down and Byzantine nodes is 16,the consensus delay of the proposed algorithm is reduced by 72%and the throughput is increased by about 37%compared with that of PBFT.Meanwhile,the system security and stability is improved.

关 键 词:区块链 共识算法 信任模型 快速节点 物联网 拜占庭容错 仿真实验 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象