检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Youngjin Hwang Seungyoon Kang Junseok Kim
机构地区:[1]Department of Mathematics,Korea University,Seoul,02841,Republic of Korea
出 处:《Computers, Materials & Continua》2025年第2期1811-1838,共28页计算机、材料和连续体(英文)
摘 要:This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts.Diblock copolymer systems form complex structures at the nanometer scale and play a significant role in various applications.The phase-field model,in particular,is essential for describing the formation and evolution of these structures and is widely used as a tool to effectively predict the movement of phase boundaries and the distribution of phases over time.In this paper,we discuss the principles and implementations of various numerical methodologies for this model and analyze the strengths,limitations,stability,accuracy,and computational efficiency of each method.Traditional approaches such as Fourier spectral methods,finite difference methods and alternating direction explicit methods are reviewed,as well as recent advancements such as the invariant energy quadratization method and the scalar auxiliary variable scheme are also presented.In addition,we introduce examples of the phase-field model,which are fingerprint image restoration and 3D printing.These examples demonstrate the extensive applicability of the reviewed methods and models.
关 键 词:Nonlocal cahn–hilliard PHASE-FIELD diblock copolymer melts Ohta–Kawasaki model numerical methods pattern formation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49