检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kexin Wang Jiancheng Liu Yuqing Lin Tuo Wang Zhipeng Zhang Wanlong Qi Xingye Han Runyuan Wen
机构地区:[1]Northwest Institute of Mechanical and Electrical Engineering,Xianyang,712099,China [2]School of Information Engineering,Chang’an University,Xi’an,710064,China [3]School of Computer Science and Technology,Xidian University,Xi’an,710071,China
出 处:《Computers, Materials & Continua》2025年第2期1879-1899,共21页计算机、材料和连续体(英文)
基 金:supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010).
摘 要:Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object detection.Current frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment inconsistencies.To overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object detection.The ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter efficiency.These improvements empower the model to accurately detect objects across varying scales.The ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box coherence.This approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection accuracy.Comprehensive evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection models.These findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.
关 键 词:Oriented object detection transformer deep learning
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.80.77