HMFM: A Method for Identifying High-Value Patents by Fusing Multiple Features  

在线阅读下载全文

作  者:Na Deng Jiuan Zhang 

机构地区:[1]School of Computer Science,Hubei University of Technology,Wuhan,430068,China

出  处:《Computers, Materials & Continua》2025年第2期2235-2254,共20页计算机、材料和连续体(英文)

摘  要:Rapid and accurate identification of high-quality patents can accelerate the transformation process of scientific and technological achievements, optimize the management of intellectual property rights and enhance the vitality of innovation. Aiming at the shortcomings of the traditional high-value patent assessment method, which is relatively simple and seldom considers the influence of patentees, this paper proposes a high-quality patent method HMFM (High-Value Patent Multi-Feature Fusion Method) that fuses multi-dimensional features. A weighted node importance assessment method in complex network called GLE (Glob-Local-struEntropy) based on improved structural entropy is designed to calculate the influence of the patentee to form the patentee’s features, and the patent text features are extracted by BERT-DPCNN deep learning model, which is supplemented to the basic patent indicator system. Finally a machine learning algorithm is used to assess the value of patents. Experiment results show that our method can identify high-value patents more effectively and accurately.

关 键 词:Patents high value assessment deep learning structural entropy complex networks BERT DPCNN 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象