检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lihua Xie Ni Tang Qing Chen Jun Li
机构地区:[1]Division of Information Center,Tobacco Sichuan Industry Co.,Ltd.,Chengdu,610017,China [2]Computer Network Information Center,Chinese Academy of Sciences,Beijing,100190,China
出 处:《Computers, Materials & Continua》2025年第2期3381-3397,共17页计算机、材料和连续体(英文)
基 金:supported by the Global Research and Innovation Platform Fund for Scientific Big Data Transmission(Grant No.241711KYSB20180002);National Key Research and Development Project of China(Grant No.2019YFB1405801).
摘 要:In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.
关 键 词:Tobacco sentiment analysis natural language processing cross-attention fusion external knowledge
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170