A dual benchmarking study of facial forgery and facial forensics  

在线阅读下载全文

作  者:Minh Tam Pham Thanh Trung Huynh Thanh Tam Nguyen Thanh Toan Nguyen Thanh Thi Nguyen Jun Jo Hongzhi Yin Quoc Viet Hung Nguyen 

机构地区:[1]Griffith University,Gold Coast Campus,Queensland,Australia [2]Ecole Polytechnique Federale de Lausanne,Vaud,Switzerland [3]Faculty of Information Technology,HUTECH University,Ho Chi Minh City,Vietnam [4]Deakin University,Geelong,Victoria,Australia [5]The University of Queensland,St Lucia,Queensland,Australia

出  处:《CAAI Transactions on Intelligence Technology》2024年第6期1377-1397,共21页智能技术学报(英文)

基  金:QuỹĐổi mới sáng tạo Vingroup,Grant/Award Number:VINIF.2020.ThS.BK.10。

摘  要:In recent years,visual facial forgery has reached a level of sophistication that humans cannot identify fraud,which poses a significant threat to information security.A wide range of malicious applications have emerged,such as deepfake,fake news,defamation or blackmailing of celebrities,impersonation of politicians in political warfare,and the spreading of rumours to attract views.As a result,a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend.However,there is no comprehensive,fair,and unified performance evaluation to enlighten the community on best performing methods.The authors present a systematic benchmark beyond traditional surveys that provides in-depth insights into facial forgery and facial forensics,grounding on robustness tests such as contrast,brightness,noise,resolution,missing information,and compression.The authors also provide a practical guideline of the benchmarking results,to determine the characteristics of the methods that serve as a comparative reference in this never-ending war between measures and countermeasures.The authors’source code is open to the public.

关 键 词:BENCHMARK deepfake digital forensics visual facial forgery 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象