检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jinfu Liu Runwei Ding Yuhang Wen Nan Dai Fanyang Meng Fang-Lue Zhang Shen Zhao Mengyuan Liu
机构地区:[1]School of Intelligent Systems Engineering,Sun Yat-sen University,Shenzhen,China [2]Peng Cheng Laboratory,Shenzhen,China [3]State Key Laboratory of General Artificial Intelligence,Peking University,Shenzhen Graduate School,Shenzhen,China [4]Changchun University of Science and Technology,Changchun,China [5]Victoria University of Wellington,Wellington,New Zealand
出 处:《CAAI Transactions on Intelligence Technology》2024年第6期1623-1633,共11页智能技术学报(英文)
基 金:National Natural Science Foundation of China,Grant/Award Number:62203476;Natural Science Foundation of Guangdong Province,Grant/Award Number:2024A1515012089;Natural Science Foundation of Shenzhen,Grant/Award Number:JCYJ20230807120801002;Shenzhen Innovation in Science and Technology Foundation for The Excellent Youth Scholars,Grant/Award Number:RCYX20231211090248064。
摘 要:Multimodal-based action recognition methods have achieved high success using pose and RGB modality.However,skeletons sequences lack appearance depiction and RGB images suffer irrelevant noise due to modality limitations.To address this,the authors introduce human parsing feature map as a novel modality,since it can selectively retain effective semantic features of the body parts while filtering out most irrelevant noise.The authors propose a new dual-branch framework called ensemble human parsing and pose network(EPP-Net),which is the first to leverage both skeletons and human parsing modalities for action recognition.The first human pose branch feeds robust skeletons in the graph convolutional network to model pose features,while the second human parsing branch also leverages depictive parsing feature maps to model parsing features via convolutional backbones.The two high-level features will be effectively combined through a late fusion strategy for better action recognition.Extensive experiments on NTU RGB t D and NTU RGB t D 120 benchmarks consistently verify the effectiveness of our proposed EPP-Net,which outperforms the existing action recognition methods.Our code is available at https://github.com/liujf69/EPP-Net-Action.
关 键 词:action recognition human parsing human skeletons
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.2.88