一种基于简化方程的改进粒子群优化算法  

An Improved Particle Swarm Optimization Algorithm Basedon Simplified Equations

在线阅读下载全文

作  者:马钰 魏文红 MA Yu;WEI Wenhong(School of Computer Science and Technology,Dongguan University of Technology,Dongguan 523808,China)

机构地区:[1]东莞理工学院计算机科学与技术学院,广东东莞523808

出  处:《东莞理工学院学报》2025年第1期41-47,共7页Journal of Dongguan University of Technology

摘  要:为提高粒子群优化算法的收敛速度和求解精度,本文基于无视速度影响的简化粒子群优化算法,引入随迭代次数自适应调整的非线性惯性权重和异步学习因子,以此平衡粒子的全局搜索和局部开发能力。同时融合遗传算法的精英保留策略,确保每一代进化中最佳个体得以保留,助力粒子逃离局部最优。最后,通过5种测试函数比较了基本粒子群优化算法、本文改进算法以及其他经典改进算法的性能,实验证明,本文改进算法在收敛速度和求解精度等方面有显著的提升。To enhance the convergence speed and solution accuracy of the Particle Swarm Optimization(PSO)algorithm,this study proposes an improved PSO algorithm based on the simplified PSO algorithm that disregards velocity influences.The proposed approach incorporates a nonlinear inertia weight and an asynchronous learning factor,both adaptively adjusted with respect to the iteration count,aiming to balance the global exploration and local exploitation capabilities of particles.Additionally,the algorithm integrates the elite retention strategy from genetic algorithms to ensure the preservation of the best individual in each generation,facilitating particle escape from local optima.Finally,the performance of the basic PSO algorithm,the proposed improved algorithm,and other classical enhancement algorithms are compared by five benchmark test functions.Experimental results show that the improved algorithm significantly improves the convergence speed and solution accuracy.

关 键 词:简化粒子群优化算法 非线性惯性权重 非线性异步学习因子 群体智能 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象