检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙伟 王斌 李互刚 李刚 SUN Wei;WANG Bin;LI Hugang;LI Gang(Shizuishan Power Supply Company,State Grid Ningxia Electric Power Co.,Ltd.,Shizuishan 753000,China)
机构地区:[1]国网宁夏电力有限公司石嘴山供电公司,宁夏石嘴山753000
出 处:《自动化仪表》2025年第2期92-96,共5页Process Automation Instrumentation
摘 要:为保证电力部门有效分析不同配网区域线路杆塔受损情况,研究基于粒子群优化-蚁群优化(PSO-ACO)算法的配网线路杆塔受损空间分布特征识别模型。采集配网线路杆塔受损空间分布相关信息,以构成初始数据集。采用标准化与分类变量编码对数据进行预处理,以得到高质量数据集。创新性地结合粒子群优化(PSO)算法与蚁群优化(ACO)算法以构成混合PSO-ACO算法。搜索最优解,并识别杆塔受损概率的空间分布情况。该模型所得识别结果显示,试验配网区域的中间区域线路杆塔受损概率更高,并呈向外逐步扩散减弱的分布趋势。识别结果与实际分布情况具有较高的一致性。该模型识别精度高、可靠性强、时效性优,可为电力部门有效分析各区域线路杆塔的受损情况,以及制定相应应对措施提供科学依据。To ensure that the power sector effectively analyzes the damage of line towers in different distribution network areas,the spatial distribution feature recognition model of distribution network line tower damage based on particle swarm optimization-ant colony optimization(PSO-ACO)algorithm is studied.The information about the spatial distribution of damaged towers in distribution network line is collected to form an initial data set.The data are preprocessed using standardization and categorical variable coding to obtain a high-quality data set.The particle swarm optimization(PSO)algorithm and ant colony optimization(ACO)algorithm are innovatively combined to form a hybrid PSO-ACO algorithm.The optimal solution is searched to identify the spatial distribution of tower damage probability.The identification results obtained by the model show that the probability of tower damage is higher in the middle region line of the test distribution network area,and the distribution tends to gradually spread outward and weaken.The identification results have high consistency with the actual distribution.The model has high recognition accuracy,high reliability,and excellent timeliness,which can provide a scientific basis for the power department to effectively analyze the damage of line towers in various regions and formulate corresponding countermeasures.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7