基于机器学习脑卒中功能恢复及预后预测模型的系统评价  

Systematic review of machine learning models for predicting functional recovery and prognosis in stroke

在线阅读下载全文

作  者:王嘉孺 张瑛 杨永[1] 祁文 肖华业 马秋平[1] 杨连招[1] 罗自维 何雅青 张江银 韦嘉雯 孟媛 谭思连 Wang Jiaru;Zhang Ying;Yang Yong;Qi Wen;Xiao Huaye;Ma Qiuping;Yang Lianzhao;Luo Ziwei;He Yaqing;Zhang Jiangyin;Wei Jiawen;Meng Yuan;Tan Silian(Guangxi University of Chinese Medicine,Nanning 530200,Guangxi Zhuang Autonomous Region,China;Faculty of Chinese Medicine Science,Guangxi University of Chinese Medicine,Nanning 530222,Guangxi Zhuang Autonomous Region,China;Guangxi Zhuang Autonomous Region Maternal and Child Health Hospital,Nanning 530021,Guangxi Zhuang Autonomous Region,China)

机构地区:[1]广西中医药大学,广西壮族自治区南宁市530200 [2]广西中医药大学赛恩斯新医药学院,广西壮族自治区南宁市530222 [3]广西壮族自治区妇幼保健院,广西壮族自治区南宁市530021

出  处:《中国组织工程研究》2025年第29期6317-6325,共9页Chinese Journal of Tissue Engineering Research

基  金:2022年度广西高校中青年教师科研基础能力提升项目(自然科学类)(2022KY1670),项目负责人:张瑛;2022年广西中医药大学赛恩斯新医药学院校级科研项目(2022MS012),项目负责人:张瑛;2022年广西中医药大学校级科研项目(2022MS020),项目负责人:杨永;2024年广西中医药大学赛恩斯新医药学院校大学生创新训练计划项目(202413643028)(国家级),项目负责人:何雅青;广西中医药大学高层次人才创新培育团队(2022A010),项目负责人:马秋平;2020年广西哲学社会科学规划研究课题(20FGL024),项目负责人:杨连招;广西自然科学基金项目(2013GXNSFDA278001),项目负责人:杨连招。

摘  要:目的:如今机器学习算法逐渐被应用于预测脑卒中和心血管疾病方面。与传统回归模型相比,机器学习可以通过探索大量预测特征与结果变量之间的灵活关系,从数据中学习,以实现高预测准确性,为个体化治疗和康复方案的制定提供了新的方法。此文旨在系统评价基于机器学习脑卒中功能恢复及预后的预测模型,综合评估其预测性能及临床应用潜力,为相关预后预测模型的构建、应用及推广提供参考。方法:按照PRISMA指南进行系统评价。通过检索PubMed、EMbase、Web of Science核心数据库、中国知网、万方和中国生物医学文献数据库,筛选出使用机器学习方法进行脑卒中预后预测的相关文献,检索时限为2014-01-01/2024-07-01。由2名研究人员严格按照纳入与排除标准独立筛选文献、提取数据,使用预测模型偏倚风险评价工具评价模型质量。结果:①初步检索共获取3126篇文献,经过筛选和排除,最终纳入18篇研究,共运用13种机器学习方法构建了150个预测模型,其中应用次数最多的3种方法为逻辑回归、随机森林和极限梯度提升(XGBoost);仅有1项研究开展了外部验证;有8项研究报告了缺失数据的处理方法;②结局指标方面有8项研究采用了临床数据与影像学数据结合来构建模型,9项研究仅运用临床数据构建模型,1项研究仅用影像学数据构建模型;③18项研究均给出了研究中最重要的特征,其中被提及最多的是美国国立卫生研究院卒中量表和年龄;所有研究均报告了曲线下面积值,范围0.74-0.96,最高为0.96;所有模型的总体偏倚风险均为高偏倚风险,模型分析领域高偏倚风险是导致所有模型总体偏倚风险高的主要原因;④Meta分析结果显示年龄和美国国立卫生研究院卒中量表评分对脑卒中预后影响显著,年龄[MD=8.49,95%CI(6.24,10.75),P<0.01],美国国立卫生研究院卒中量表评分[MD=4.78,95%CI(2.56,7.00),P<0.OBJECTIVE:Nowadays,machine learning algorithms are gradually being applied to predict stroke and cardiovascular disease.Compared with traditional regression models,machine learning can learn from data to achieve high prediction accuracy by exploring the flexible relationship between a large number of predictive features and outcome variables,providing a new method for the formulation of individualized treatment and rehabilitation programs.This study aims to systematically evaluate stroke functional recovery and prognosis prediction models based on machine learning,comprehensively assessing their predictive performance and clinical application potential to provide references for the development,application,and promotion of related predictive models.METHODS:This review was conducted following the PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)guidelines.Relevant literature on stroke prognosis prediction using machine learning methods was selected by searching PubMed,EMbase,Web of Science Core Collection,CNKI,WanFang,and the China Biomedical Literature Database,with the search period from January 1,2014,to July 1,2024.Two researchers independently screened the literature and extracted data based on inclusion and exclusion criteria,using the Prediction model Risk Of Bias ASsessment Tool(PROBAST)to assess model quality.RESULTS:(1)A total of 3126 articles were obtained in the preliminary search.After screening and exclusion,18 articles were finally included.150 prediction models were constructed using 13 machine learning methods.The three most frequently used methods are Logistic Regression,Random Forest,and Extreme Gradient Boosting(XGBoost).Only one study was externally validated.Eight studies reported how the missing data were handled.(2)In terms of outcome indicators,8 studies used the combination of clinical data and imaging data to build models,9 studies only used clinical data to build models,and 1 study only used imaging data to build models.(3)Each of the 18 studies gave the most imp

关 键 词:机器学习 脑卒中 预后预测 功能恢复 系统评价 

分 类 号:R459.9[医药卫生—治疗学] R318[医药卫生—临床医学] R743.3

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象