矿山有轨电动机车智能化轨道检测系统  

Intelligent Rail Attitude Detection System for Mine Rail Vehicles

在线阅读下载全文

作  者:卫建军 邢天 WEI Jianjun;XING Tian(Shanxi Huaxiang Group Co.,Ltd.,Linfen 041600,China;Xi’an Rare Metal Materials Institute Co.,Ltd.,Xi’an 710016,China)

机构地区:[1]山西华翔集团股份有限公司,山西临汾041600 [2]西安稀有金属材料研究院有限公司,陕西西安710016

出  处:《铜业工程》2025年第1期125-130,共6页Copper Engineering

基  金:陕西省自然科学基础研究青年项目(2024JC-YBQN-0102)资助。

摘  要:随着矿山运输装备的智能化、无人化、自动化,无人驾驶有轨电动机车开始大规模应用。然而,由于有轨电动机车运输货物吨位较高,且伴随着车辆振动、冲击及地形微小沉降等,导致轨道非常容易变形,严重影响车身的姿态,从而带来较大安全隐患。针对有轨电动机车的轨道检测问题,设计了一种智能化轨道检测系统,对轨道形位参数进行无人化检测与记录。首先,以高精度惯性导航装置为核心,结合有轨电车里程计设计组合导航系统,能够提供高精度的三维姿态及位置;然后,设计了两台捷联的激光测距仪,在惯性导航装置修正姿态的基础上,完成轨距及轨道高低位测量;最后,设计了信息融合算法,对轨道的轨距、垂直位移量进行高精度测量,最终诊断出故障并计算故障所处的位置。With the development of intelligent,unmanned,and automated mining transportation equipment,unmanned rail electric locomotives have been widely used in mines.However,due to the high tonnage of goods transported by rail electric vehicles,as well as problems such as vehicle vibration,impact,and small terrain settlement,the track is very prone to deformation,seriously affecting the posture of the vehicle body and posing high safety hazards.This article focused on the track detection problem of electric locomotives with tracks,and designed an intelligent track detection system that could perform unmanned detection and recording of track shape and position parameters.Firstly,a combination navigation system was designed with a high-precision inertial navigation device as the core,combined with a tram odometer,which could provide high-precision three-dimensional attitude and position.Furthermore,two strapdown laser rangefinders were designed to complete the measurement of track gauge and track height based on the attitude correction of the inertial navigation device.Finally,an information fusion algorithm was designed to accurately measure the track gauge,tilt,twist,and vertical displacement of the track,diagnose faults,and calculate their location.

关 键 词:轨道检测 动态检测 轨距检测 形位检测 

分 类 号:TF631[冶金工程—钢铁冶金] TF804.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象