检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵星[1,2,3] 张嘉楠 张一鸣 金欣欣 苏俏[1] 宋亚辉 李玉荣[1] 王瑾[1] ZHAO Xing;ZHANG Jia-nan;ZHANG Yi-ming;JIN Xin-xin;SU Qiao;SONG Ya-hui;LI Yu-rong;WANG Jin(Institute of Cereal and Oil Crops,Hebei Academy of Agricultural and Forestry Sciences,Hebei Key Laboratory of Crop Genetics and Breeding,Shijiazhuang 050035,China;Shijiazhuang MolBreeding Biotech Ltd.,Shijiazhuang 050035,China;Department of Pharmaceutical Analysis,College of Chemical Engineering,Shijiazhuang University,Shijiazhuang 050035,China)
机构地区:[1]河北省农林科学院粮油作物研究所/河北省作物遗传育种重点实验室,河北石家庄050035 [2]石家庄博瑞迪生物技术有限公司,河北石家庄050035 [3]石家庄学院化工学院药物分析教研室,河北石家庄050035
出 处:《中国油料作物学报》2025年第1期226-233,共8页Chinese Journal of Oil Crop Sciences
基 金:国家现代农业产业技术体系(CARS-14);河北省现代农业产业技术体系油料创新团队(HBCT2023030205);花生现代种业科技创新团队(21326316D);河北省农林科学院现代农业科技创新工程(2022KJCXZX-LYS-11);石家庄市科学技术研究与发展计划项目(211490122A)。
摘 要:本研究以重组自交系群体为材料,建立检测范围宽、适用于优良单株筛选的蔗糖含量近红外光谱快速测定方法。采用高效液相色谱-示差折光技术测定325份材料的蔗糖含量,并利用波通DA7200型近红外分析仪采集近红外光谱,采用偏最小二乘法,构建基于18~23粒花生籽仁的蔗糖含量近红外预测模型。结果表明,模型对花生籽仁蔗糖含量的预测范围可达2.07%~12.37%,决定系数为0.9054,均方根误差为0.6774。利用20份材料对模型进行外部验证,独立测试集决定系数为0.9478。该模型对花生籽仁蔗糖含量的预测准确,可实现杂交早期世代单株蔗糖含量的快速、无损测定,提升高蔗糖含量花生品种的育种效率。In this study,recombinant inbred line populations were used to establish a rapid near-infrared spectroscopy method for determining sucrose content with a wide detection range and suitable for screening excellent individual plants.This study used high performance liquid chromatography combined with differential refractive index technology to determine the sucrose content of 325 materials.The near-infrared spectra were collected using a Perten DA7200 near-infrared analyzer,and a near-infrared prediction model for sucrose content on small sample cup with 18-23 peanut kernels was constructed using partial least squares method.The results showed that the prediction range of the model for sucrose content in peanut kernels was 2.07%~12.37%,with a determination coefficient of 0.9054 and a root mean square error of 0.6774.The model was externally validated using 20 materials,and the independent test set decision coefficient was 0.9478.This model predicts the sucrose content of peanut kernels accurately,which can achieve rapid and non-destructive determination of sucrose content per plant in early hybrid generations,and improve the breeding efficiency of high sucrose content peanut varieties.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.53.239