工业AI技术推动造纸工业节能减碳:基于大系统思维的探讨与实践  

Industrial AI Technology to Promote Energy Saving and Carbon Reduction in the Paper Industry:Discussion and Practice Based on Large-scale System Thinking

在线阅读下载全文

作  者:刘焕彬[1,2] 李继庚 LIU Huanbin;LI Jigeng(National Engineering Research Center for Papermaking and Pollution Control,South China University of Technology,Guangzhou,Guangdong Province,510640;Guangzhou POI-TECH Intelligent Information Technology Co.,Ltd.,Guangzhou,Guangdong Province,510700)

机构地区:[1]华南理工大学造纸与污染控制国家工程研究中心,广东广州510640 [2]广州博依特智能信息科技有限公司,广东广州510700

出  处:《中国造纸》2025年第2期1-7,共7页China Pulp & Paper

摘  要:造纸工业作为资源和能源密集型产业,面临着日益严格的碳减排压力和环保要求。而工业AI技术则为低碳发展提供了全新的可能性。本文以造纸工业为研究对象,基于大系统思维和“数实融合闭环系统”的理念,探讨工业AI技术在碳减排中的应用,从数据价值化、工艺AI技术到大系统思维的实践,分析其对生产效率、资源利用和碳排放的影响。分析表明大系统思维和工业AI技术的结合,可显著提升造纸工业的资源利用效率,减少碳排放,助力造纸工业向高质量发展转型。As a resource and energy intensive industry,the paper industry is facing increasingly strict carbon reduction pressure and environmental protection requirements,with enormous transformation pressure.Industrial AI technology provide new possibilities for low-carbon development.The paper industry as the research object,based on the large-scale system thinking and concept of“closed-loop system of digital-real physical worlds fusion”,the paper explored the application of industrial AI technology in carbon reduction.From the data valuation,process AI technology to the practice of large-scale system thinking,the effects on production efficiency,resource utilization and carbon emission were analyzed,and the optimization path were put forward.The results showed that the combination of large-scale system thinking and industrial AI technology could significantly improve the resource utilization efficiency of the industry,reduce carbon emission,and help the paper industry transform to high-quality development.

关 键 词:造纸工业 工业AI技术 碳减排 大系统思维 

分 类 号:TS7[轻工技术与工程—制浆造纸工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象