检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵建强[1,2] 梁雪 Zhao Jianqiang;Liang Xue(School of Economics and Management,Yanshan University,Qinhuangdao 066004,China;Research Center for Regional Economic Development,Yanshan University,Qinhuangdao 066004,China)
机构地区:[1]燕山大学经济管理学院,河北秦皇岛066004 [2]燕山大学区域经济发展研究中心,河北秦皇岛066004
出 处:《数量经济研究》2024年第4期134-146,共13页The Journal of Quantitative Economics
基 金:国家社会科学基金项目“文旅深度融合发展模式、实现路径与协同机制研究”(23BJY143);河北省软科学基金项目“京津冀协同背景下全面提升河北省科技成果转化和产业化对策研究”(22557603D);河北省人力资源和社会保障课题“河北省旅游类高校毕业生重点群体高质量充分就业机制研究”(JRS-2023-1025)的联合资助。
摘 要:本文选取北京市为研究区域,利用夜间灯光数据、POI数据、人口密度数据研究了北京市经济集聚、休闲旅游空间布局及人口分布现状,同时结合核密度分析法、变量归一化处理、数据网格化、双因素组合制图探讨了北京市休闲旅游与夜间灯光数据、人口密度数据之间的耦合关系,并进一步探究了数据之间的关联性及耦合结果出现的原因。研究发现,北京市经济规模、休闲旅游和人口密度总体上呈集聚状态分布,三种数据的空间耦合度存在较高的一致性,部分区域存在耦合相异现象:夜间灯光数据与POI数据耦合相异部分分布在商业区及道路沿线,主要是受夜间灯光数据溢出效应及交通因素影响;夜间灯光数据与人口密度数据耦合相异部分主要集中在公园、学校、公共游憩等休闲场所;人口密度数据与POI数据耦合度最高,职住地分离造成耦合结果相异。Beijing was selected as the research area,and the economic agglomeration,leis⁃ure tourism spatial layout and population distribution of Beijing were studied by using night light data,POI data and population density data.Then the coupling relationship between leis⁃ure tourism,night light data and population density data in Beijing was discussed by nuclear density analysis,variable normalization,data meshing and two-factor combination map⁃ping.And further explore the correlation between the data and the reasons for the coupling re⁃sults.The results show that the economic scale,leisure tourism and population distribution of Beijing are all clustered in general,and the spatial coupling degree of the three kinds of data has a high consistency.There are coupling differences in some areas:the coupling difference between night light data and POI data is mainly caused by the“spillover”effect of night light data and traffic factors.The coupling difference between night light data and population density date is mainly concentrated in residential areas,schools,industrial parks,etc.The coupling degree between population density data and POI data is the highest,and the coupling results are different due to the separation of occupation and residence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.35.81