路径损耗因子未知下基于改进樽海鞘群算法的RSSI定位  

RSSI localization based on improved salp swarm algorithm with unknown path loss factor

在线阅读下载全文

作  者:陈礼坤 章勇 范大照 刘素芳 CHEN Likun;ZHANG Yong;FAN Dazhao;LIU Sufang(School of Mechanical and Electronic Engineering,East China University of Technology,Nanchang 330000,China)

机构地区:[1]东华理工大学机械与电子工程学院,江西南昌330000

出  处:《现代电子技术》2025年第5期181-186,共6页Modern Electronics Technique

基  金:江西省“双千计划”长期项目(DHSQT22021003)。

摘  要:通常基于接收信号强度指示(RSSI)的无线传感器网络定位需要提前对路径损耗因子n值进行测量,在不同环境下需要重新测量n值、校准,这将大大增加定位的复杂度。针对此情况,文中提出一种无需测n值的定位方法,即使用比值法消除路径损耗模型中参考节点的不确定影响,通过引力搜索改进樽海鞘群算法(SSA-GSA),同时寻找n值与信号源的坐标。相较于一般的定位方法,该方法不受环境条件的约束,在无线传感器网络监测现场可以即时进行系统定位,无需另外测量计算n值。仿真结果证明了该方法的可行性,不仅降低了定位成本,还具有较高的定位精度。Usually,it is required to measure the path loss factor(n value)in advance for the wireless sensor network(WSN)localization based on received signal strength indication(RSSI).Re-measurement and calibration of the n value in different environments increase the complexity of the localization greatly.In view of this,a localization method that does not require measuring the n value is proposed.Initially,the ratio method is used to eliminate the uncertain influence of the reference nodes in the path loss model.Then,the salp swarm algorithm(SSA)is improved by the employment of the gravitational search algorithm(GSA),which is named as SSA-GSA.Meanwhile,the n value and the coordinates of the signal source are searched for.In comparison with the conventional localization methods,this approach is not constrained by environmental conditions,enabling real-time system localization at the WSN monitoring site without additional measurement and calculation of the n value.Simulation results demonstrate that the proposed method can not only reduce localization costs,but also exhibit higher localization accuracy,so it is of feasibility.

关 键 词:无线传感器网络 接收信号强度指示 路径损耗因子 定位 樽海鞘群算法 引力搜索算法 

分 类 号:TN711-34[电子电信—电路与系统] TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象