检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Junfeng Cui Guanghui Wang Fengyi Song Xiaoyan Ma Changliang Zou
机构地区:[1]School of Mathematical Sciences,Shenzhen University,Shenzhen 518060,P.R.China [2]NITFID,School of Statistics and Data Science,LPMC and KLMDASR and LEBPS,Nankai University,Tianjin 300071,P.R.China [3]School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2025年第2期677-702,共26页数学学报(英文版)
基 金:supported by the National Key R&D Program of China(Grant Nos.2022YFA1003703,2022YFA 1003800);the National Natural Science Foundation of China(Grant Nos.11925106,12231011,11931001,12226007,12326325);supported by the National Natural Science Foundation of China(Grant No.12301380);supported by the National Key R&D Program of China(Grant Nos.2021YFA1000100,2021YFA1000101,2022YFA1003800);the Natural Science Foundation of Shanghai(Grant No.23ZR1419400)。
摘 要:We consider the problem of multi-task regression with time-varying low-rank patterns,where the collected data may be contaminated by heavy-tailed distributions and/or outliers.Our approach is based on a piecewise robust multi-task learning formulation,in which a robust loss function—not necessarily to be convex,but with a bounded derivative—is used,and each piecewise low-rank pattern is induced by a nuclear norm regularization term.We propose using the composite gradient descent algorithm to obtain stationary points within a data segment and employing the dynamic programming algorithm to determine the optimal segmentation.The theoretical properties of the detected number and time points of pattern shifts are studied under mild conditions.Numerical results confirm the effectiveness of our method.
关 键 词:Low-rank matrix estimation multiple change-point detection multi-task regression robust learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.96.239