Variational Bayesian Tensor Quantile Regression  

在线阅读下载全文

作  者:Yunzhi Jin Yanqing Zhang 

机构地区:[1]Yunnan Key Laboratory of Statistical Modeling and Data Analysis,Yunnan University,Kunming 650091,P.R.China [2]Yunnan Key Laboratory of Statistical Modeling and Data Analysis,Southwest United Graduate School,Yunnan University,Kunming 650091,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2025年第2期733-756,共24页数学学报(英文版)

基  金:Supported by National Key R&D Program of China(Grant No.102022YFA1003701);National Natural Science Foundation of China(Grant No.12271472,12231017,12001479);Natural Science Foundation of Yunnan Province(Grant No.202101AU070073,202201AT070101)。

摘  要:Quantile regression is widely used in variable relationship research for statistical learning.Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional estimation methods.However,many modern applications involve tensor data with the intrinsic tensor structure.Traditional quantile regression can not deal with tensor regression issues well.To this end,we consider a tensor quantile regression with tensor-valued covariates and develop a novel variational Bayesian estimation approach to make estimation and prediction based on the asymmetric Laplace model and the CANDECOMP/PARAFAC decomposition of tensor coefficients.To incorporate the sparsity of tensor coefficients,we consider the multiway shrinkage priors for marginal factor vectors of tensor coefficients.The key idea of the proposed method is to efficiently combine the prior structural information of tensor and utilize the matricization of tensor decomposition to simplify the complexity of tensor coefficient estimation.The coordinate ascent algorithm is employed to optimize variational lower bound.Simulation studies and a real example show the numerical performances of the proposed method.

关 键 词:Asymmetric Laplace model CANDECOMP PARAFAC decomposition matricization tensor quantile regression variational Bayesian 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象