检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Yunnan Key Laboratory of Statistical Modeling and Data Analysis,Yunnan University,Kunming 650091,P.R.China [2]Yunnan Key Laboratory of Statistical Modeling and Data Analysis,Southwest United Graduate School,Yunnan University,Kunming 650091,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2025年第2期733-756,共24页数学学报(英文版)
基 金:Supported by National Key R&D Program of China(Grant No.102022YFA1003701);National Natural Science Foundation of China(Grant No.12271472,12231017,12001479);Natural Science Foundation of Yunnan Province(Grant No.202101AU070073,202201AT070101)。
摘 要:Quantile regression is widely used in variable relationship research for statistical learning.Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional estimation methods.However,many modern applications involve tensor data with the intrinsic tensor structure.Traditional quantile regression can not deal with tensor regression issues well.To this end,we consider a tensor quantile regression with tensor-valued covariates and develop a novel variational Bayesian estimation approach to make estimation and prediction based on the asymmetric Laplace model and the CANDECOMP/PARAFAC decomposition of tensor coefficients.To incorporate the sparsity of tensor coefficients,we consider the multiway shrinkage priors for marginal factor vectors of tensor coefficients.The key idea of the proposed method is to efficiently combine the prior structural information of tensor and utilize the matricization of tensor decomposition to simplify the complexity of tensor coefficient estimation.The coordinate ascent algorithm is employed to optimize variational lower bound.Simulation studies and a real example show the numerical performances of the proposed method.
关 键 词:Asymmetric Laplace model CANDECOMP PARAFAC decomposition matricization tensor quantile regression variational Bayesian
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49